Bioreduction: the biological activity, characterization, and synthesis of silver nanoparticles

Today, nanoparticles are effectively used in different areas. Initially, physical and chemical methods were used in the synthesis of nanoparticles. Biosynthesis green synthesis has emerged as an alternative to overcome the toxic effects of chemically synthesized nanoparticles. In this study, green synthesis of silver nanoparticles AgNPs with the leaf extract of Anthurium andraeanum was performed. UV-Vis spectrophotometry, scanning transmission electron microscopy, and XRD were applied to characterize the biosynthesized nanoparticles. As a result of the characterization, the spectra showed that a spectrum at a wavelength of about 419 nm and a spherical size of 38 nm nanoparticles was formed. Antibacterial and biofilm inhibition activities of AgNPs against gram-positive and gram-negative bacteria were determined. AgNPs at a concentration of 1 mg/mL showed antibacterial activity against all of the bacterial strains. In the antibiofilm activity study, the highest inhibition percentage was obtained against the P. fluorescens strain at 87.1%, at a concentration of 0.5 mg/mL.

___

  • 1. Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM et al. Nano Genotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials 2009; 30 (23-24): 3891-3914. doi: 10.1016/j.biomaterials.2009.04.009
  • 2. Ahamed M, AlSalhi MS, Siddiqui MKJ. Silver nanoparticle applications and human health. Clinica Chimica Acta 2010; 411 (23-24): 1841-1848. doi: 10.1016/j.cca.2010.08.016
  • 3. Kim S, Choi JE, Choi J, Chung KH, Park K et al. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicology In Vitro 2009; 23 (6): 1076-1084. doi: 10.1016/j.tiv.2009.06.001
  • 4. Li LS, Hu J, Yang W, Alivisatos AP. Band gap variation of size-and shape-controlled colloidal CdSe quantum rods. Nano Letters 2001; 1 (7): 349-351. https://doi.org/10.1021/nl015559r
  • 5. Antony JJ, Nivedheetha M, Siva D, Pradeepha G, Kokilavani P et al. Antimicrobial activity of Leucas aspera engineered silver nanoparticles against Aeromonas hydrophila in infected catla. Colloids and Surfaces B: Biointerfaces 2013; 109: 20-24. doi: 10.1016/j.colsurfb.2013.03.020
  • 6. Gurunathan S, Han JW, Kwon DN, Kim JH. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against gram-negative and gram-positive bacteria. Nanoscale Research Letters 2014; 9 (1): 373.
  • 7. Mathura A, Kushwaha A, Dalakoti V, Dalakoti G, Singh DS, Der. Pharmacia Lettre 2014; 5: 118.
  • 8. Korani M, Rezayat SM, Bidgoli SA. Sub-chronic dermal toxicity of silver nanoparticles in guinea pig: special emphasis to heart, bone and kidney toxicities. Iranian Journal of Pharmaceutical Research 2013; 12(3): 511.
  • 9. Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nano level. Science 2006; 311 (5761): 622-627. doi: 10.1126/science.1114397
  • 10. Arora S, Jain J, Rajwade JM, Paknikar KM. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicology and Applied Pharmacology 2009; 236 (3): 310-318. doi: 10.1016/j.taap.2009.02.020
  • 11. Chen X, Schluesener HJ. Nanosilver: A nanoproduct in medical application. Toxicology Letters 2008; 176 (1): 1-12. doi: 10.1016/j.toxlet.2007.10.004
  • 12. Korbekandi H, Ashari Z, Iravani S, Abbasi, S. Optimization of biological synthesis of silver nanoparticles using Fusarium oxysporum. Iranian Journal of Pharmaceutical Research 2013; 12 (3): 289.
  • 13. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of biomedical materials research 2000; 52 (4): 662-668. doi: 10.1002/1097-4636(20001215)52:4
  • 14. Shazhni JA, Renu A, Murugan M. Phytochemical screening and in vitro antimicrobial activity of ornamental plant Anthurium andraeanum. Journal of Pharmaceutical Sciences and Research 2016; 8 (7): 668-670.
  • 15. Saini J, Kashyap D, Batra B, Kumar S, Kumar R et al. Green synthesis of silver nanoparticles by using Neem (Azadirachta indica) and Amla (Phyllanthus emblica) leaf Extract. Indian Journal of Applied Research 2013; 3 (5): 209-210. doi: 10.15373/2249555X/MAY2013/6
  • 16. Namratha N, Monica PV, Asian J. Synthesis of silver nanoparticles using Azadirachta indica (Neem) extract and usage in water purification. Pharmaceutical Technology 2013; 3 (4): 170-174.
  • 17. Andrews JM. Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy 2002; 49 (6): 1049.
  • 18. Merritt JH, Kadouri DE, O’Toole GA. Growing and analyzing static biofilms. Current Protocols in Microbiology 2011; 22 (1): 1B.1.1-1B.1.18. doi: 10.1002/9780471729259.mc01b01s22
  • 19. Jayaprakash N, Vijaya JJ, Kaviyarasu, K, Kombaiah, K., Kennedy, LJ et al. Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies. Journal of Photochemistry and Photobiology B: Biology, 2017; 169: 178-185.
  • 20. Vignesh V, Anbarasi KF, Karthikeyeni S, Sathiyanarayanan G, Subramanian P et al. A superficial phyto-assisted synthesis of silver nanoparticles and their assessment on hematological and biochemical parameters in Labeo rohita (Hamilton, 1822). Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013; 439: 184-192. doi: 10.1016/j.colsurfa.2013.04.011
  • 21. Jyoti K, Baunthiyal M, Singh A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences 2016; 9 (3): 217-227. doi: 10.1016/j.jrras.2015.10.002
  • 22. Shankar SS, Ahmad A, Sastry M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnology Progress 2003; 19 (6): 1627-1631. doi: 10.1021/bp034070w
  • 23. Ahmed S, Saifullah AM, Swami BL, Ikram S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of Radiation Research and Applied Sciences 2016; 9: 1-7. doi: 10.1016/j.jrras.2015.06.006
  • 24. Dipankar C, Murugan S. The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids and Surfaces B: Biointerfaces 2012; 98: 112-119. doi: 10.1016/j.colsurfb.2012.04.006
  • 25. Gao X, Yourick JJ, Topping VD, Black T, Olejnik N et al. Toxicogenomic study in rat thymus of F1 generation offspring following maternal exposure to silver ion. Toxicology Reports 2015; 2: 341-350. doi: 10.1016/j.toxrep.2014.12.008.
  • 26. Jayaprakash N, Vijaya JJ, Kennedy LJ, Priadharsini K, Palani P. One-step phytosynthesis of highly stabilized silver nanoparticles using Piper nigrum extract and their antibacterial activity. Materials Letters 2014; 137: 358-361.
  • 27. Malabadi RB, Mulgund GS, Meti NM, Nataraja K, Kumar SV. Antibacterial activity of silver nanoparticles synthesized by using whole plant extracts of Clitoria ternatea. Research in Pharmacy 2012; 2 (4): 10-21.
  • 28. Donlan RM. Biofilm Formation: A clinically relevant microbiological process. Clinical Infectious Diseases 2001; 33: 1387-1392. doi: 10.1086/322972
  • 29. Kalishwaralal K, Barath-ManiKanth S, Pandian S, Deepak V, Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf. B: Biointerfaces 2010; 79: 340-344. doi: 10.1016/j.colsurfb.2010.04.014
  • 30. Velázquez JL, Santos-Flores A, Araujo-Meléndez J, Sánchez-Sánchez R, Velasquillo C et al. Anti-biofilm and cytotoxicity activity of impregnated dressings with silver nanoparticles. Materials Science and Engineering: C 2015; 49: 604-611. doi: 10.1016/J.MSEC.2014.12.084.
  • 31. Naheed A, Seema S, Singh VN, Shamsi SF, Anjum F et al. Biosynthesis of silver nanoparticles from Desmodium triflorum: A novel approach towards weed utilization. Biotechnology Research International 2011; ID: 454090. 8 doi: 10.4061/2011/454090
  • 32. Russell AD, Hugo WB. 7 Antibacterial activity and action of silver. Progress in Medicinal Chemistry 1994; 31: 351-370. doi: 10.1016/S0079-6468(08)70024-9
  • 33. Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied Environmental Microbiology 2007; 73 (6): 1712-1720. doi: 10.1128/AEM.02218-06
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK