Analysis of electrochemical impedance spectroscopy response for commercial lithium-ion batteries: modeling of equivalent circuit elements

Electrochemical impedance spectroscopy measurements were performed to capture the physically meaningful parameters of commercially available 18650 cylindrical and 2032 coin cells by using the equivalent circuit model. The impedance response of the batteries was systematically investigated and discussed. A detailed analysis was achieved providing a determination of influential factors on the equivalent circuit parameters. The results suggested that the cell type tested here influenced the equivalent circuit elements profoundly. Taguchi analysis indicated that state-of-charge had the highest effect on the cathodic constant-phase-element exponent. The results contribute to full electrochemical analysis that is required for battery characterization.

___

  • 1. Xu X, Qi CY, Hao ZD, Wang H, Jiu JT et al. The surface coating of commercial LiFePO4 by utilizing ZIF-8 for high electrochemical performance lithium ion battery. Nano-Micro Letters 2018; 10 (1): 1-9. doi: 10.1007/s40820- 017-0154-4
  • 2. Schmidt A, Smith A, Ehrenberg H. Power capability and cyclic aging of commercial, high power lithium ion battery cells with respect to different cell designs. Journal of Power Sources 2019; 425: 27-38. doi: 10.1016/j.jpowsour.2019.03.075
  • 3. Matsuda T, Ando K, Myojin M, Matsumoto M, Sanada T et al. Investigation of the influence of temperature on the degradation mechanism of commercial nickel manganese cobalt oxide-type lithium-ion cells during long-term cycle tests. Journal of Energy Storage 2019; 21: 665-671. doi: 10.1016/j.est.2019.01.009
  • 4. Juarez-Robles D, Chen CF, Barsukov Y, Mukherjee PP. Impedance evolution characteristics in lithium-ion batteries. Journal of the Electrochemical Society 2017; 164 (4): A837-A847. doi: 10.1149/2.1251704jes
  • 5. Scipioni R, Jørgensen PS, Stroe DI, Younesi R, Simonsen SB et al. Complementary analyses of aging in a commercial LiFePO4 /graphite 26650 cell. Electrochimica Acta 2018; 284: 454-468. doi: 10.1016/j.electacta.2018.07.124
  • 6. Maheshwari A, Heck M, Santarelli M. Cycle aging studies of lithium nickel manganese cobalt oxide-based batteries using electrochemical impedance spectroscopy. Electrochimica Acta 2018; 273: 335-348. doi: 10.1016/j.electacta.2018.04.045
  • 7. Moralı U, Erol S. Electrochemical impedance analysis of 18650 lithium-ion and 6HR61 nickel-metal hydride rechargeable batteries. Journal of the Faculty of Engineering and Architecture of Gazi University 2020; 35 (1): 297-310. doi: 10.17341/gazimmfd.463280
  • 8. Orazem ME, Tribollet B. Electrochemical impedance spectroscopy. United States of America: John Wiley & Sons, 2017.
  • 9. Zhu X, Macía LF, Jaguemont J, de Hoog J, Nikolian A et al. Electrochemical impedance study of commercial LiNi 0.80 Co 0.15 Al 0.05 O2 electrodes as a function of state of charge and aging. Electrochimica Acta 2018; 287: 10-20. doi: 10.1016/j.electacta.2018.08.054
  • 10. Erol S, Orazem ME, Muller RP. Influence of overcharge and over-discharge on the impedance response of LiCoO2 |C batteries. Journal of Power Sources 2014; 270: 92-100. doi: 10.1016/j.jpowsour.2014.07.038
  • 11. Erol S, Orazem ME. The influence of anomalous diffusion on the impedance response of LiCoO2 |C batteries. Journal of Power Sources 2015; 293: 57-64. doi: 10.1016/j.jpowsour.2015.05.047
  • 12. Wang H, Frisco S, Gottlieb E, Yuan R, Whitacre JF. Capacity degradation in commercial Li-ion cells: the effects of charge protocol and temperature. Journal of Power Sources 2019; 426: 67-73. doi: 10.1016/j.jpowsour.2019.04.034
  • 13. Ovejas VJ, Cuadras A. State of charge dependency of the overvoltage generated in commercial Li-ion cells. Journal of Power Sources 2019; 418: 176-185. doi: 10.1016/j.jpowsour.2019.02.046
  • 14. Astafev EA. Electrochemical noise of a Li-ion battery: measurement and spectral analysis. Journal of Solid State Electrochemistry 2019; 23 (4): 1145-1153. doi: 10.1007/s10008-018-4067-z
  • 15. Pastor-Fernández C, Uddin K, Chouchelamane GH, Widanage WD, Marco J. A comparison between electrochemical impedance spectroscopy and incremental capacity-differential voltage as Li-ion diagnostic techniques to identify and quantify the effects of degradation modes within battery management systems. Journal of Power Sources 2017; 360: 301-318. doi: 10.1016/j.jpowsour.2017.03.042
  • 16. Moralı U, Demiral H, Sensoz S. Synthesis of carbon molecular sieve for carbon dioxide adsorption: chemical vapor deposition combined with Taguchi design of experiment method. Powder Technology 2019; 355: 716-726. doi: 10.1016/j.powtec.2019.07.101
  • 17. Moralı U, Demiral H, Sensoz S. Optimization of activated carbon production from sunflower seed extracted meal: Taguchi design of experiment approach and analysis of variance. Journal of Cleaner Production 2018; 189: 602-611. doi: 10.1016/j.jclepro.2018.04.084
  • 18. Manikandan B, Yap C, Balaya P. Towards understanding heat generation characteristics of Li-ion batteries by calorimetry, impedance, and potentiometry studies. Journal of The Electrochemical Society 2017; 164 (12): A2794- A2800. doi: 10.1149/2.1811712jes
  • 19. Li X, Colclasure AM, Finegan DP, Ren D, Shi Y et al. Degradation mechanisms of high capacity 18650 cells containing Si-graphite anode and nickel-rich NMC cathode. Electrochimica Acta 2019; 297: 1109-1120. doi: 10.1016/j.electacta.2018.11.194
  • 20. Ye J, Chen H, Wang Q, Huang P, Sun J et al. Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions. Applied Energy 2016; 182: 464-474. doi: 10.1016/j.apenergy.2016.08.124