miRNAs involved in drought stress in Italian ryegrass (Lolium multiflorum L.)

miRNAs have been characterized as a regulator of main processes in plants by silencing genes. The functions of microRNAs have been studied in various crops, hovewer, no studies have been observed about miRNAs in Italian rygrass (Lolium multiflorum L.) against drought stress. This experiment aimed to reveal the involvement of miRNAs against drought stress in sensitive and tolerant Italian ryegrass genotypes. Four genotypes (G1 and G2 as drought sensitive - G3 and G4 as drought tolerant) were selected. The sensitivities of these genotypes against drought stress were verified by performing growth parameters, relative water and proline contents under normal and drought conditions. The results show that the relative expression of the miRNAs revealed both similarities and differences between sensitive and tolerant Italian ryegrass genotypes. Under drought conditions, significant upregulations (miRNA156i, miRNA845a) and downregulations (miRNA2937, miRNA3980b) were observed in drought tolerant genotypes. Similarly, significant upregulation (miRNA845a) and downregulation (miRNA5636) were observed in drought sensitive genotypes under drought conditions. The results indicate that miRNA3980b, miRNA156i, and miRNA2937 are responsible for drought stress tolerance in tolerant Italian ryegrass. These miRNAs could be used to develop Italian ryegrass plants that tolerate drought stress conditions.

___

  • Akdogan G, 2016, FUNCT INTEGR GENOMIC, V16, P221, DOI 10.1007/s10142-015-0452-1
  • Bakhshi B, 2017, J PLANT PHYSIOL, V216, P35, DOI 10.1016/j.jplph.2017.05.012
  • Bakhshi B, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0156814
  • Balyan S, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-15450-1
  • Barrera-Figueroa BE, 2011, BMC PLANT BIOL, V11, DOI 10.1186/1471-2229-11-127
  • Basu Supratim, 2016, F1000Res, V5, DOI 10.12688/f1000research.7678.1
  • BATES LS, 1973, PLANT SOIL, V39, P205, DOI 10.1007/BF00018060
  • Benedetti L, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10111619
  • Boopathi NM, 2015, PLANTOMICS OMICS PLA, P181, DOI [10.1007/978-81-322-2172- 2_7, DOI 10.1007/978-81-322-2172-2_7]
  • Bothe A, 2018, J AGRON CROP SCI, V204, P375, DOI 10.1111/jac.12269
  • Boualem A, 2008, PLANT J, V54, P876, DOI 10.1111/j.1365-313X.2008.03448.x
  • Chen QS, 2017, BMC GENOMICS, V18, DOI 10.1186/s12864-016-3372-0
  • Chen XM, 2009, ANNU REV CELL DEV BI, V25, P21, DOI 10.1146/annurev.cellbio.042308.113417
  • Covarrubias AA, 2010, PLANT CELL ENVIRON, V33, P481, DOI 10.1111/j.1365-3040.2009.02048.x
  • Cyriac D, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0194977
  • Demirkol G, 2020, TURK J BOT, V44, P214, DOI 10.3906/bot-2002-28
  • Ding YF, 2013, J EXP BOT, V64, P3077, DOI 10.1093/jxb/ert164
  • Ebrahimiyan M, 2013, GRASS FORAGE SCI, V68, P59, DOI 10.1111/j.1365-2494.2012.00869.x
  • El-Sanousi R. S., 2016, American Journal of Plant Sciences, V7, P870, DOI 10.4236/ajps.2016.76082
  • Farrant JM, 2000, PLANT ECOL, V151, P29, DOI 10.1023/A:1026534305831
  • Gonzalez-Villagra J, 2017, PLANTA, V246, P299, DOI 10.1007/s00425-017-2711-y
  • Hackenberg M, 2015, PLANT BIOTECHNOL J, V13, P2, DOI 10.1111/pbi.12220
  • Hamza NB, 2016, GENE EXPR PATTERNS, V20, P88, DOI 10.1016/j.gep.2016.01.001
  • Huang BR, 2000, CROP SCI, V40, P196, DOI 10.2135/cropsci2000.401196x
  • Huang Y, 2014, APPL BIOCHEM BIOTECH, V173, P1011, DOI 10.1007/s12010-014-0891-5
  • JORDAN WR, 1983, AGR WATER MANAGE, V7, P281, DOI 10.1016/0378-3774(83)90090-2
  • Kadioglu A, 2012, PLANT SCI, V182, P42, DOI 10.1016/j.plantsci.2011.01.013
  • Kantar M, 2011, PLANTA, V233, P471, DOI 10.1007/s00425-010-1309-4
  • Kantar M, 2010, FUNCT INTEGR GENOMIC, V10, P493, DOI 10.1007/s10142-010-0181-4
  • Kashiwagi J, 2006, FIELD CROP RES, V95, P171, DOI 10.1016/j.fcr.2005.02.012
  • Kemesyte V, 2017, CROP SCI, V57, P1935, DOI 10.2135/cropsci2016.10.0864
  • Khandal H, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-04906-z
  • Li RongHua, 2006, Agricultural Sciences in China, V5, P751, DOI 10.1016/S1671-2927(06)60120-X
  • Liu DM, 2009, PHYSIOL PLANTARUM, V136, P223, DOI 10.1111/j.1399-3054.2009.01229.x
  • Liu HP, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0142799
  • Liu HH, 2008, RNA, V14, P836, DOI 10.1261/rna.895308
  • Liu Q, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00043
  • Liu WW, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.02200
  • Ma J, 2020, CAN J PLANT SCI, V100, P445, DOI 10.1139/cjps-2018-0327
  • Mahto BK, 2020, PLANT SMALL RNA, P521, DOI [10.1016/B978-0-12- 817112-7.00023-7, DOI 10.1016/B978-0-12-817112-7.00023-7]
  • Makbul S, 2011, TURK J BOT, V35, P369, DOI 10.3906/bot-1002-7
  • Muhammad S, 2018, PLANT PRODUCTIVITY E, V1, P221
  • MURASHIGE T, 1962, PHYSIOL PLANTARUM, V15, P473, DOI 10.1111/j.1399-3054.1962.tb08052.x
  • Nageshbabu R., 2013, International Research Journal of Biological Sciences, V2, P52
  • Nguyen GN, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00629
  • Noman A, 2017, ENVIRON SCI POLLUT R, V24, P10068, DOI 10.1007/s11356-017-8593-5
  • Ozelcam H, 2015, ASIAN AUSTRAL J ANIM, V28, P1427, DOI 10.5713/ajas.15.0074
  • Pan L, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00519
  • Pokoo R, 2018, BMC GENOMICS, V19, DOI 10.1186/s12864-018-5280-y
  • Rajasheker G, 2019, PLANT SIGNALING MOL .
  • Ranganayakulu GS, 2015, J EXP BIOL AGRIC SCI, V3, P97
  • Rosales MA, 2013, J SCI FOOD AGR, V93, P324, DOI 10.1002/jsfa.5761
  • Ryu D, 2018, FOOD CHEM, V261, P260, DOI 10.1016/j.foodchem.2018.04.061
  • Sunkar R, 2004, PLANT CELL, V16, P2001, DOI 10.1105/tpc.104.022830
  • Sunkar R, 2010, SEMIN CELL DEV BIOL, V21, P805, DOI 10.1016/j.semcdb.2010.04.001
  • Tohidi B, 2017, FOOD CHEM, V220, P153, DOI 10.1016/j.foodchem.2016.09.203
  • Turner NC, 2019, PLANT SOIL, V439, P45, DOI 10.1007/s11104-018-3893-1
  • Vakilian KA, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-59981-6
  • Wang TZ, 2011, BMC GENOMICS, V12, DOI 10.1186/1471-2164-12-367
  • Wang WJ, 2014, J EXP BOT, V65, P2147, DOI 10.1093/jxb/eru084
  • Wei LY, 2009, INT J PLANT SCI, V170, P979, DOI 10.1086/605122
  • WHAPHAM CA, 1993, J APPL PHYCOL, V5, P231, DOI 10.1007/BF00004023
  • Yang Feng-Xi, 2009, Acta Botanica Yunnanica, V31, P421, DOI 10.3724/SP.J.1143.2009.09044
  • Yang HX, 2020, AUTOPHAGY, V16, P271, DOI 10.1080/15548627.2019.1606647
  • Zegaoui Z, 2017, J PLANT PHYSIOL, V218, P26, DOI 10.1016/j.jplph.2017.07.009
  • Zeng XC, 2018, BMC PLANT BIOL, V18, DOI 10.1186/s12870-018-1242-4
  • Zhang JW, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0170330
  • Zhao BT, 2007, BIOCHEM BIOPH RES CO, V354, P585, DOI 10.1016/j.bbrc.2007.01.022
  • Zhou LG, 2010, J EXP BOT, V61, P4157, DOI 10.1093/jxb/erq237