Effect of ash carbon nanofibers on GABA shunt pathway in germinating seeds of to-mato (Lycopersicon esculentum Mill., c.v. Rohaba.) under salt stress

The aim of the current study was to examine the effect of black ash carbon nanofibers (CNFs) on gamma-aminobutyric acid (GABA) shunt pathway in germinating seeds of tomato (Lycopersicon esculentum Mill., c.v. Rohaba) under salt stress. Seed’s germination pattern, seed moisture content, GABA shunt metabolite levels (GABA, Glutamate and Alanine), total proteins and total carbohydrates, and the level of oxidative damage in response to sodium chloride (NaCl) treatments were determined. A significant increase of moisture content in CNFs treated seeds associated with significant increases in germination percentage was found. Data also showed a significant increase in GABA shunt metabolites in treating seeds compared to control seeds under different concentrations of NaCl. The total protein and carbohydrate levels significantly increased with positive correlation in control and treated seeds as NaCl concentration increased. A significant increase in MDA level was found in both treated and control seeds under salt stress. However, treated seeds showed lower MDA accumulation compared to control seeds. Our results suggested that the elevation of GABA in CNFs treated seeds was to maintain metabolic stability under salt stress, while, in control seeds, GABA elevation was to mitigate the effect of salt stress. CNFs activated GABA shunt, which might be involved in reduction of MDA accumulation and alleviation of oxidative damage under salt stress. In conclusion, CNFs enhanced tomato seed germination during salt stress.

___

  • Aggarwal S, 2009, J AGR PHYS, V9, P20 .
  • Aghdam MTB, 2016, BRAZ J BOT, V39, P139, DOI 10.1007/s40415-015-0227-x
  • Akihiro T, 2008, PLANT CELL PHYSIOL, V49, P1378, DOI 10.1093/pcp/pcn113
  • Al Hassan M, 2015, NOT BOT HORTI AGROBO, V43, P1, DOI 10.15835/nbha4319793
  • Al-Quraan NA, 2016, BIOL PLANTARUM, V60, P132, DOI 10.1007/s10535-015-0563-5
  • Al-Quraan NA, 2015, J PLANT INTERACT, V10, P185, DOI 10.1080/17429145.2015.1056262
  • AL-Quraan NA, 2013, J PLANT PHYSIOL, V170, P1003, DOI 10.1016/j.jplph.2013.02.010
  • Alqarawi AA, 2016, LEGUME RES, V39, P396, DOI 10.18805/1r.v0iOF.9561
  • Amini F, 2007, RUSS J PLANT PHYSL+, V54, P464, DOI 10.1134/S102144370704005X
  • Amini F, 2005, AM J BIOCH BIOTECHNO, V1, P204, DOI [10.3844/ajbbsp.2005.204.208, DOI 10.3844/AJBBSP.2005.204.208]
  • Aryadeep Roychoudhury, 2013, Annual Review and Research in Biology, V3, P422
  • Ashkavand P., 2015, Lesne Prace Badawcze, V76, P350
  • Ashraf M, 2007, ENVIRON EXP BOT, V59, P206, DOI 10.1016/j.envexpbot.2005.12.006
  • ASHRAF M, 1995, J AGRON CROP SCI, V174, P351, DOI 10.1111/j.1439-037X.1995.tb01122.x
  • Bai QY, 2009, FOOD CHEM, V116, P152, DOI 10.1016/j.foodchem.2009.02.022
  • Bartyzel I, 2003, BIOL PLANTARUM, V47, P221, DOI 10.1023/B:BIOP.0000022255.01125.99
  • Basu M, 2009, PROG NAT SCI-MATER, V19, P1173, DOI 10.1016/j.pnsc.2008.12.006
  • Bennett SW, 2013, WATER RES, V47, P4074, DOI 10.1016/j.watres.2012.12.039
  • Bergmeyer HU, 1983, METHODS ENZYMATIC AN, VI, P427
  • Bolarin MC, 1995, J PLANT PHYSIOL, V147, P463, DOI 10.1016/S0176-1617(11)82184-X
  • Brechenmacher L, 2010, PLANT PHYSIOL, V153, P1808, DOI 10.1104/pp.110.157800
  • Burman U, 2013, TOXICOL ENVIRON CHEM, V95, P605, DOI 10.1080/02772248.2013.803796
  • Campbell JK, 2004, J NUTR, V134, p3486S, DOI 10.1093/jn/134.12.3486S
  • Canas JE, 2008, ENVIRON TOXICOL CHEM, V27, P1922, DOI 10.1897/08-117.1
  • Carillo P, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.00100
  • Chakrabarty D, 2007, PLANT GROWTH REGUL, V53, P107, DOI 10.1007/s10725-007-9208-9
  • Chen Z, 2007, J EXP BOT, V58, P4245, DOI 10.1093/jxb/erm284
  • Cheng BZ, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19092520
  • Chung HJ, 2009, LWT-FOOD SCI TECHNOL, V42, P1712, DOI 10.1016/j.lwt.2009.04.007
  • Cuartero J, 1999, SCI HORTIC-AMSTERDAM, V78, P83, DOI 10.1016/S0304-4238(98)00191-5
  • Debouba M, 2006, J PLANT PHYSIOL, V163, P1247, DOI 10.1016/j.jplph.2005.09.012
  • Demiral T, 2006, ENVIRON EXP BOT, V56, P72, DOI 10.1016/j.envexpbot.2005.01.005
  • Doganlar ZB, 2010, AFR J AGR RES, V5, P2056
  • Dresselhaus MS, 2004, ANNU REV MATER RES, V34, P247, DOI 10.1146/annurev.matsci.34.040203.114607
  • El-Baz FK, 2003, PAK J BIOL SCI, V6, P16, DOI [10.3923/pjbs.2003.16.22, DOI 10.3923/PJBS.2003.16.22]
  • El-Tayeb MA, 2005, PLANT GROWTH REGUL, V45, P215, DOI 10.1007/s10725-005-4928-1
  • ElSamad HMA, 1997, BIOL PLANTARUM, V39, P263, DOI 10.1023/A:1000309407275
  • Fait A, 2011, PLANT PHYSL, V157, pDOI: .
  • Faizan M, 2018, PHOTOSYNTHETICA, V56, P678, DOI 10.1007/s11099-017-0717-0
  • Foolad MR, 2004, PLANT CELL TISS ORG, V76, P101, DOI 10.1023/B:TICU.0000007308.47608.88
  • Forde BG, 2007, J EXP BOT, V58, P2339, DOI 10.1093/jxb/erm121
  • Galili G, 2001, CURR OPIN PLANT BIOL, V4, P261, DOI 10.1016/S1369-5266(00)00170-9
  • Gapinska M, 2008, ACTA PHYSIOL PLANT, V30, P11, DOI 10.1007/s11738-007-0072-z
  • Gerszberg A, 2017, PLANT GROWTH REGUL, V83, P175, DOI 10.1007/s10725-017-0251-x
  • Gogos A, 2012, J AGR FOOD CHEM, V60, P9781, DOI 10.1021/jf302154y
  • Haghighi M., 2012, Journal of Biological & Environmental Sciences, V6, P87
  • Harborne JB, 1997, PLANT BIOCH, P503, DOI DOI 10.1016/B978-0-12-214674-9.X5000-0
  • Hashem A, 2015, J PLANT INTERACT, V10, P230, DOI 10.1080/17429145.2015.1052025
  • Hatami M, 2014, TURK J BIOL, V38, P130, DOI 10.3906/biy-1304-64
  • HEATH RL, 1968, ARCH BIOCHEM BIOPHYS, V125, P189, DOI 10.1016/0003-9861(68)90654-1
  • HURKMAN WJ, 1989, PLANT PHYSIOL, V90, P1444, DOI 10.1104/pp.90.4.1444
  • Kafkafi U, 1996, PLANT ROOTS HIDDEN H, P435
  • Kaveh H, 2011, J BIOL ENV SCI, V5, P159 .
  • Khan MR, 2001, INT J PEST MANAGE, V47, P293, DOI 10.1080/096708700110052059
  • Khedr AHA, 2003, J EXP BOT, V54, P2553, DOI 10.1093/jxb/erg277
  • Khodakovskaya M, 2009, ACS NANO, V3, P3221, DOI 10.1021/nn900887m
  • Khodakovskaya MV, 2011, P NATL ACAD SCI USA, V108, P1028, DOI 10.1073/pnas.1008856108
  • Kim SK, 2006, J ENVIRON BIOL, V27, P181 .
  • Koca H, 2007, ENVIRON EXP BOT, V60, P344, DOI 10.1016/j.envexpbot.2006.12.005
  • Krishnan S, 2013, J AM SOC HORTIC SCI, V138, P358, DOI 10.21273/JASHS.138.5.358
  • Levy J, 2004, HERBAL GRAM, V62, P49 .
  • Li Y, 2010, J SCI FOOD AGR, V90, P52, DOI 10.1002/jsfa.3778
  • Li Z, 2014, MOLECULES, V19, P18003, DOI 10.3390/molecules191118003
  • Liu QL, 2009, NANO LETT, V9, P1007, DOI 10.1021/nl803083u
  • Luo Huang-ying, 2011, ACTA BOTANICA BOREALI-OCCIDENTALIA SINICA, V31, P2235
  • Lutts S, 1996, PLANT GROWTH REGUL, V19, P207, DOI 10.1007/BF00037793
  • Mae N, 2012, J AGR FOOD CHEM, V60, P1013, DOI 10.1021/jf2046812
  • Malekzadeh P, 2014, PHYSIOL MOL BIOL PLA, V20, P133, DOI 10.1007/s12298-013-0203-5
  • Matumoto Y, 1997, EHIME KOUGI KENKYU H, V35, P97
  • Meloni Diego Ariel, 2004, Brazilian Journal of Plant Physiology, V16, P39, DOI 10.1590/S1677-04202004000100006
  • Mittler R, 2004, TRENDS PLANT SCI, V9, P490, DOI 10.1016/j.tplants.2004.08.009
  • Mohammadi R, 2014, RUSS J PLANT PHYSL+, V61, P768, DOI 10.1134/S1021443714050124
  • Mondal A, 2011, J NANOPART RES, V13, P4519, DOI 10.1007/s11051-011-0406-z
  • Monthioux M., 2010, SPRINGER HDB NANOTEC, P47, DOI 10.1007/978-3-642-02525-9_3
  • Mukherjee A, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00172
  • Nair R, 2010, PLANT SCI, V179, P154, DOI 10.1016/j.plantsci.2010.04.012
  • Nayyar H, 2014, J PLANT GROWTH REGUL, V33, P408, DOI 10.1007/s00344-013-9389-6
  • Nel A, 2006, SCIENCE, V311, P622, DOI 10.1126/science.1114397
  • Panda L, 2020, EMERG MATER RES, V9, P921, DOI 10.1680/jemmr.18.00097
  • Parvaiz A, 2008, PLANT SOIL ENVIRON, V54, P89, DOI 10.17221/2774-PSE
  • Porgali Z, 2001, EFFECT NACL TYPE SAL .
  • Porgali Z. B., 2005, Acta Botanica Hungarica, V47, P173, DOI 10.1556/ABot.47.2005.1-2.15
  • Qasim M, 2003, BIOL PLANTARUM, V46, P629, DOI 10.1023/A:1024844402000
  • Rani PU, 2016, ACTA PHYSIOL PLANT, V38, DOI 10.1007/s11738-016-2074-1
  • Rasool S, 2013, ACTA PHYSIOL PLANT, V35, P1039, DOI 10.1007/s11738-012-1142-4
  • Renault H, 2010, BMC PLANT BIOL, V10, DOI 10.1186/1471-2229-10-20
  • Ruffini Castiglione M, 2009, CARYOLOGIA, V62, P161, DOI 10.1080/00087114.2004.10589681
  • Saito T, 2008, J JPN SOC HORTIC SCI, V77, P61, DOI 10.2503/jjshs1.77.61
  • SANEOKA H, 1995, PLANT PHYSIOL, V107, P631, DOI 10.1104/pp.107.2.631
  • SHANNON MC, 1987, J AM SOC HORTIC SCI, V112, P416
  • Sharon M, 2010, CARBON NANOFORMS APP .
  • Shelp BJ, 1999, TRENDS PLANT SCI, V4, P446, DOI 10.1016/S1360-1385(99)01486-7
  • Siddiqui MH, 2014, ENVIRON TOXICOL CHEM, V33, P2429, DOI 10.1002/etc.2697
  • SIMS JT, 1995, WATER AIR SOIL POLL, V81, P363, DOI 10.1007/BF01104021
  • SNAPP SS, 1992, NEW PHYTOL, V121, P71, DOI 10.1111/j.1469-8137.1992.tb01094.x
  • Snider JL, 2016, FIELD CROP RES, V193, P186, DOI 10.1016/j.fcr.2016.05.002
  • Srinivasan C, 2010, CURR SCI INDIA, V99, P274
  • Srinivasulu M.R., 2011, J CHEM BIOL PHYS SCI, V1, P328
  • UMA S, 1995, ANN BOT-LONDON, V76, P43, DOI 10.1006/anbo.1995.1076
  • Venkatachalam P, 2017, PLANT PHYSIOL BIOCH, V110, P118, DOI 10.1016/j.plaphy.2016.09.004
  • Vijayakumari K, 2016, PLANT GROWTH REGUL, V78, P57, DOI 10.1007/s10725-015-0074-6
  • WALLACE W, 1984, PLANT PHYSIOL, V75, P170, DOI 10.1104/pp.75.1.170
  • Wang YC, 2017, SCI REP-UK, V7, DOI 10.1038/srep43609
  • Wen DX, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-23909-y
  • Xing SG, 2007, PLANT PHYSIOL BIOCH, V45, P560, DOI 10.1016/j.plaphy.2007.05.007
  • Yaronskaya E, 2006, PLANTA, V224, P700, DOI 10.1007/s00425-006-0249-5
  • Yin YG, 2010, PLANT CELL PHYSIOL, V51, P1300, DOI 10.1093/pcp/pcq090
  • Yurekli F, 2004, ACTA BIOL CRACOV BOT, V46, P201
  • Zahra S, 2011, J BIOPHYSICS STRUCTU, V2, P35, DOI [10.5897/JBSB.9000012, DOI 10.5897/JBSB.9000012]
  • Zaytseva O, 2016, CHEM BIOL TECHNOL AG, V3, DOI 10.1186/s40538-016-0070-8
  • Zhang GJ, 1997, PHYTOCHEMISTRY, V44, P1007, DOI 10.1016/S0031-9422(96)00626-7
  • Zhang JT, 2011, J PROTEOME RES, V10, P1904, DOI 10.1021/pr101140n
  • Zheng L, 2005, BIOL TRACE ELEM RES, V104, P83, DOI 10.1385/BTER:104:1:083