Transcriptome profiles associated with selenium-deficiency-dependent oxidative stress identify potential diagnostic and therapeutic targets in liver cancer cells

Hepatocellular carcinoma (HCC) is one of the most common cancer types with high mortality rates and displays increased resistance to various stress conditions such as oxidative stress. Conventional therapies have low efficacies due to resistance and off-target effects in HCC. Here we aimed to analyze oxidative stress-related gene expression profiles of HCC cells and identify genes that could be crucial for novel diagnostic and therapeutic strategies. To identify important genes that cause resistance to reactive oxygen species (ROS), a model of oxidative stress upon selenium (Se) deficiency was utilized. The results of transcriptome-wide gene expression data were analyzed in which the differentially expressed genes (DEGs) were identified between HCC cell lines that are either resistant or sensitive to Se-deficiency-dependent oxidative stress. These DEGs were further investigated for their importance in oxidative stress resistance by network analysis methods, and 27 genes were defined to have key roles; 16 of which were previously shown to have impact on liver cancer patient survival. These genes might have Se-deficiency-dependent roles in hepatocarcinogenesis and could be further exploited for their potentials as novel targets for diagnostic and therapeutic approaches. Key words: Hepatocellular carcinoma, selenium, oxidative stress, transcriptome-wide

___

  • Akutsu N, 2010, WORLD J GASTROENTERO, V16, P3521, DOI 10.3748/wjg.v16.i28.3521
  • Archer KJ, 2010, MOL GENET GENOMICS, V283, P341, DOI 10.1007/s00438-010-0522-y
  • Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI 10.3322/caac.21492
  • Bublik DR, 2017, P NATL ACAD SCI USA, V114, pE496, DOI 10.1073/pnas.1614876114
  • Castillo DS, 2015, CELL CYCLE, V14, P1300, DOI 10.4161/15384101.2014.985031
  • Cavga AD, 2019, FUNCT INTEGR GENOMIC, V19, P729, DOI 10.1007/s10142-019-00680-5
  • Chen B, 2020, NAT REV GASTRO HEPAT, V17, P238, DOI 10.1038/s41575-019-0240-9
  • Coleman SJ, 2014, J HEPATOCELL CARCINO, V1, P43, DOI 10.2147/JHC.S48958
  • Di Maso V, 2015, PLOS ONE, V1, P10, DOI DOI 10.1371/J0UMAL.P0NE.0143289
  • Edgar R, 2002, NUCLEIC ACIDS RES, V30, P207, DOI 10.1093/nar/30.1.207
  • ENGEDAL N, 2018, OXID MED CELL LONGEV, V2018, DOI DOI 10.1155/2018/4968321
  • Fulda Simone, 2010, Int J Cell Biol, V2010, P214074, DOI 10.1155/2010/214074
  • Galili T, 2018, BIOINFORMATICS, V34, P1600, DOI 10.1093/bioinformatics/btx657
  • Gu YT, 2017, J ZHEJIANG UNIV-SC B, V18, P770, DOI 10.1631/jzus.B1600123
  • Guo M, 2020, J CANCER, V11, P2008, DOI 10.7150/jca.39972
  • Halliwell B, 2007, BIOCHEM J, V401, P1, DOI 10.1042/BJ20061131
  • Huang SSC, 2009, SCI SIGNAL, V2, DOI 10.1126/scisignal.2000350
  • Huang YL, 2019, CANCER MANAG RES, V11, P1725, DOI 10.2147/CMAR.S182001
  • Ibrahim S, 2018, CANCER BIOL THER, V19, P222, DOI 10.1080/15384047.2017.1416936
  • Iizuka N, 2003, ONCOGENE, V22, P3007, DOI 10.1038/sj.onc.1206401
  • Irmak MB, 2003, CANCER RES, V63, P6707 .
  • Jenkins E, 2012, GENES IMMUN, V13, P221, DOI 10.1038/gene.2011.73
  • Jensen LJ, 2009, NUCLEIC ACIDS RES, V37, pD412, DOI 10.1093/nar/gkn760
  • Jiang L, 2019, PATHOL RES PRACT, V215, P68, DOI 10.1016/j.prp.2018.10.007
  • Kiermayer C, 2007, BIOL CHEM, V388, P1091, DOI 10.1515/BC.2007.133
  • Kreyszig E, 1979, ADV ENG MATH .
  • Lee D, 2019, HEPATOLOGY, V69, P1768, DOI 10.1002/hep.30467
  • Lee D, 2017, J CLIN INVEST, V127, P1856, DOI 10.1172/JCI90253
  • Lian YF, 2018, BIOSCIENCE REP, V38, DOI 10.1042/BSR20181178
  • Liu CH, 2019, ARTIF CELL NANOMED B, V47, P1, DOI 10.1080/21691401.2018.1540425
  • Liu HL, 2016, J LIPID RES, V57, P1831, DOI 10.1194/jlr.M069807
  • Liyanage DS, 2019, FISH SHELLFISH IMMUN, V86, P301, DOI 10.1016/j.fsi.2018.11.040
  • Menyhart O, 2018, ROY SOC OPEN SCI, V5, DOI 10.1098/rsos.181006
  • Migita T, 2013, AM J PATHOL, V182, P1800, DOI 10.1016/j.ajpath.2013.01.048
  • Nishida N, 2014, DIGEST DIS, V32, P740, DOI 10.1159/000368015
  • Nwosu ZC, 2017, CELL MOL GASTROENTER, V4, P303, DOI 10.1016/j.jcmgh.2017.05.004
  • Pantic B, 2013, CELL DEATH DIS, V4, DOI 10.1038/cddis.2013.385
  • Pope ED, 2019, EXPERT OPIN THER TAR, V23, P473, DOI 10.1080/14728222.2019.1615883
  • de Peralta MSP, 2016, CELL DEATH DIS, V7, DOI 10.1038/cddis.2016.299
  • Ren XC, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/4175353
  • Ritchie ME, 2015, NUCLEIC ACIDS RES, V43, DOI 10.1093/nar/gkv007
  • Sarret C, 2019, NPJ GENOM MED, V4, DOI 10.1038/s41525-019-0092-9
  • Si MR, 2016, SCI REP-UK, V6, DOI 10.1038/srep29491
  • Siegel RL, 2016, CA-CANCER J CLIN, V66, P7, DOI 10.3322/caac.21332
  • Song L, 2009, CELL STRESS CHAPERON, V14, P417, DOI 10.1007/s12192-008-0095-4
  • Strungaru MH, 2011, INVEST OPHTH VIS SCI, V52, P7625, DOI 10.1167/iovs.10-6967
  • Subramanian A, 2005, P NATL ACAD SCI USA, V102, P15545, DOI 10.1073/pnas.0506580102
  • Takatori H, 2010, LIVER INT, V30, P438, DOI 10.1111/j.1478-3231.2009.02177.x
  • Tan J, 2020, NUCLEIC ACIDS RES, V48, P1285, DOI 10.1093/nar/gkz1114
  • Tuncbag N, 2016, SCI REP-UK, V6, DOI 10.1038/srep28668
  • Papp LV, 2007, ANTIOXID REDOX SIGN, V9, P775, DOI 10.1089/ars.2007.1528
  • Wang JH, 2020, BIORXIV, DOI [10.1101/2020.07.10.198143, DOI 10.1101/2020.07.10.198143]
  • Waris Gulam, 2006, J Carcinog, V5, P14 .
  • Yu G, 2018, MOL BIOL REP, V45, P1705, DOI 10.1007/s11033-018-4313-6
  • Yu HY, 2007, PLOS COMPUT BIOL, V3, P713, DOI 10.1371/journal.pcbi.0030059
  • Zamorano J, 1998, J IMMUNOL, V160, P3502
  • Zhang Haitao, 2005, Cancer Genomics & Proteomics, V2, P97
  • Zhou JB, 2013, MITOCHONDRION, V13, P163, DOI 10.1016/j.mito.2012.06.004