Targeting the tumor stroma: integrative analysis reveal GATA2 and TORYAIP1 as novel prognostic targets in breast and ovarian cancer

Tumor stroma interaction is known to take a crucial role in cancer growth and progression. In the present study, it was performed gene expression analysis of stroma samples with ovarian and breast cancer through an integrative analysis framework to identify common critical biomolecules at multiomics levels. Gene expression datasets were statistically analyzed to identify common differentially expressed genes (DEGs) by comparing tumor stroma and normal stroma samples. The integrative analyses of DEGs indicated that there were 59 common core genes, which might be feasible to be potential marks for cancer stroma targeted strategies. Reporter molecules (i.e. receptor, transcription factors and miRNAs) were determined through a statistical test employing the hypergeometric probability density function. Afterward, the tumor microenvironment protein-protein interaction and the generic network were reconstructed by using identified reporter molecules and common core DEGs. Through a systems medicine approach, it was determined that hub biomolecules, AR, GATA2, miR-124, TOR1AIP1, ESR1, EGFR, STAT1, miR-192, GATA3, COL1A1, in tumor microenvironment generic network. These molecules were also identified as prognostic signatures in breast and ovarian tumor samples via survival analysis. According to literature searching, GATA2 and TORYAIP1 might represent potential biomarkers and candidate drug targets for the stroma targeted cancer therapy applications.

___

  • Agostini A, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-29332-7
  • Aguirre-Gamboa R, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074250
  • Barrett T, 2013, NUCLEIC ACIDS RES, V41, pD991, DOI 10.1093/nar/gks1193
  • Bhargava R, 2005, MODERN PATHOL, V18, P1027, DOI 10.1038/modpathol.3800438
  • Bhowmick NA, 2005, CURR OPIN GENET DEV, V15, P97, DOI 10.1016/j.gde.2004.12.003
  • Bolstad BM, 2003, BIOINFORMATICS, V19, P185, DOI 10.1093/bioinformatics/19.2.185
  • Calimlioglu B, 2015, OMICS, V19, P563, DOI 10.1089/omi.2015.0088
  • Casey T, 2009, BREAST CANCER RES TR, V114, P47, DOI 10.1007/s10549-008-9982-8
  • Chen HJ, 2018, INT J CANCER, V143, P3106, DOI 10.1002/ijc.31750
  • Comertpay B, 2020, AUTOIMMUNITY, V53, P156, DOI 10.1080/08916934.2020.1722107
  • Croft D, 2011, NUCLEIC ACIDS RES, V39, pD691, DOI 10.1093/nar/gkq1018
  • Eeckhoute J, 2007, CANCER RES, V67, P6477, DOI 10.1158/0008-5472.CAN-07-0746
  • Erez N, 2013, BIOCHEM BIOPH RES CO, V437, P397, DOI 10.1016/j.bbrc.2013.06.089
  • Gautier L, 2004, BIOINFORMATICS, V20, P307, DOI 10.1093/bioinformatics/btg405
  • Giannopoulou L, 2018, GYNECOL ONCOL, V150, P355, DOI 10.1016/j.ygyno.2018.05.026
  • Giovannelli P, 2018, FRONT ENDOCRINOL, V9, DOI 10.3389/fendo.2018.00492
  • Gov E, 2020, SYST BIOL REPROD MED, V66, P255, DOI 10.1080/19396368.2020.1759730
  • Gov E, 2017, OMICS, V21, P603, DOI 10.1089/omi.2017.0115
  • Gov E, 2017, SYST BIOL REPROD MED, V63, P219, DOI 10.1080/19396368.2017.1330368
  • Guo S, 2018, INT J BIOL SCI, V14, P2083, DOI 10.7150/ijbs.25720
  • Henshall SM, 2001, CANCER RES, V61, P423
  • Hu F, 2013, BBA-MOL BASIS DIS, V1832, P2379, DOI 10.1016/j.bbadis.2013.08.011
  • Islam T, 2018, OMICS, V22, P422, DOI 10.1089/omi.2018.0048
  • Josahkian JA, 2018, INT J GYNECOL CANCER, V28, P459, DOI 10.1097/IGC.0000000000001193
  • Kamburov A, 2013, NUCLEIC ACIDS RES, V41, pD793, DOI 10.1093/nar/gks1055
  • Kanehisa M, 2012, NUCLEIC ACIDS RES, V40, pD109, DOI 10.1093/nar/gkr988
  • Karagoz K, 2016, J THEOR BIOL, V403, P85, DOI 10.1016/j.jtbi.2016.05.020
  • Karn T, 2015, CURR CANCER DRUG TAR, V15, P652, DOI 10.2174/156800961508151001101209
  • Karnoub AE, 2007, NATURE, V449, P557, DOI 10.1038/nature06188
  • King MC, 2003, SCIENCE, V302, P643, DOI 10.1126/science.1088759
  • Kori M, 2016, SYST BIOL REPROD MED, V62, P266, DOI 10.1080/19396368.2016.1197982
  • Koromilas Antonis E, 2013, JAKSTAT, V2, pe23353, DOI 10.4161/jkst.23353
  • Li MY, 2020, EXP CELL RES, V394, DOI 10.1016/j.yexcr.2020.112153
  • Lili LN, 2013, BIOMED RES INT, V2013, DOI 10.1155/2013/846387
  • Mao Y, 2013, CANCER METAST REV, V32, P303, DOI 10.1007/s10555-012-9415-3
  • Nagy A, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-27521-y
  • Planche A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018640
  • Rahman MR, 2020, GENOMICS, V112, P1290, DOI 10.1016/j.ygeno.2019.07.018
  • Safran M, 2010, DATABASE-OXFORD, DOI 10.1093/database/baq020
  • Schauer IG, 2011, NEOPLASIA, V13, P393, DOI 10.1593/neo.101720
  • Sevimoglu T, 2014, COMPUT STRUCT BIOTEC, V11, P22, DOI 10.1016/j.csbj.2014.08.008
  • Shi XB, 2013, ONCOGENE, V32, P4130, DOI 10.1038/onc.2012.425
  • Smoot ME, 2011, BIOINFORMATICS, V27, P431, DOI 10.1093/bioinformatics/btq675
  • Smyth GK, 2003, BIOINFORMATICS, V20, P3705
  • TONG CWS, 2018, ONCOLOGY-BASEL, V8, DOI DOI 10.3389/FONC.2018.00227
  • Uddin MN, 2019, J ONCOL, V2019, DOI 10.1155/2019/8752862
  • Valkenburg KC, 2018, NAT REV CLIN ONCOL, V15, P366, DOI 10.1038/s41571-018-0007-1
  • Wang YB, 2016, BMC CANCER, V16, DOI 10.1186/s12885-016-2862-4
  • Yeung TL, 2013, CANCER RES, V73, P5016, DOI 10.1158/0008-5472.CAN-13-0023
  • Yoshihara K, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3612
  • Zellmer VR, 2017, MOL CANCER RES, V15, P585, DOI 10.1158/1541-7786.MCR-16-0312
  • Zhao Y, 2017, ONCOTARGET, V8, P25005, DOI 10.18632/oncotarget.15334