Synthesis of intracellular and extracellular gold nanoparticles with a green machine and its antifungal activity

Green synthesis method is being increasingly used in the development of safe, stable, and eco-friendly nanostructures with biological resources. In this study, extracellular and intracellular synthesis of gold nanoparticles (AuNPs) was carried out using green algae Chlorella sorokiniana Shihira & R.W. Fresh algae were isolated and identified from Musaozu Pond located in the province of Eskisehir and then extraction process were performed. Optimization studies were studied using pH value, metal salt concentration, and time parameters for extracellular synthesis and using only time parameter for intrasellular synthesis. Since more controlled and optimum conditions can be achieved in the production of AuNPs by extracellular synthesis, these nanoparticles (NPs) were used for characterization and antifungal activity studies. Optical, physical, and chemical properties of synthesized NPs were characterized by UV visible spectrophotometer (UV-Vis), dynamic light scattering (DLS), Zetasizer, X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FE-SEM), inductively coupled plasma mass spectrometer (ICP-MS) and transmission electron microscope (TEM) analysis. The optimum conditions for AuNPs synthesis were determined as 1 mM for HauCl 4 concentration, 6 for pH value, and 60th min for time. AuNPs obtained from extracellular synthesis from C. sorokiniana extract are 5-15 nm in size and spherical shape. TEM images of extracellular synthesis show noticeable cell wall and membrane damages, cytoplasma dissolutions, and irregularities. AuNPs obtained by intracellular synthesis are in 20-40 nm size and localized in the cell wall and cytoplasm. These NPs exhibited significant antifungal activity against C. tropicalis, C. glabrata, and C. albicans isolates. AuNPs obtained by algae-mediated green synthesis have a significant potential for medical and industrial use, and this eco-friendly synthesis method can be easily scaled for future studies.

___

  • Abdel-Raouf N, 2017, ARAB J CHEM, V10, pS3029, DOI 10.1016/j.arabjc.2013.11.044
  • Aboelfetoh EF, 2017, ENVIRON MONIT ASSESS, V189, DOI 10.1007/s10661-017-6033-0
  • Ahmed S, 2016, J PHOTOCH PHOTOBIO B, V161, P141, DOI 10.1016/j.jphotobiol.2016.04.034
  • Andersen RA, 2005, ALGAL CULTURING TECH, V83
  • Annamalai J, 2015, APPL NANOSCI, V5, P603, DOI 10.1007/s13204-014-0353-y
  • Arsiya F, 2017, MATER LETT, V186, P113, DOI 10.1016/j.matlet.2016.09.101
  • Arya A, 2018, BIOINORG CHEM APPL, V2018, DOI 10.1155/2018/7879403
  • BORSHEIM KY, 1990, APPL ENVIRON MICROB, V56, P352
  • Cazzaniga S, 2014, BIOTECHNOL BIOFUELS, V7, DOI 10.1186/s13068-014-0157-z
  • Chaudhary R, 2020, BIOMOLECULES, V10, DOI 10.3390/biom10111498
  • Chen YS, 2009, NANOSCALE RES LETT, V4, P858, DOI 10.1007/s11671-009-9334-6
  • Clinical Laboratory Standarts Institute, 2002, M27A2 CLIN LAB STAND
  • Costa LH, 2020, BIONANOSCIENCE, V10, P1049, DOI 10.1007/s12668-020-00776-4
  • Dounighi NM, 2012, J VENOM ANIM TOXINS, V18, P44, DOI 10.1590/S1678-91992012000100006
  • El-Sheekh Mostafa M., 2016, Journal of Genetic Engineering and Biotechnology, V14, P299, DOI 10.1016/j.jgeb.2016.09.008
  • Focsan M, 2011, NANOTECHNOLOGY, V22, DOI 10.1088/0957-4484/22/48/485101
  • Ghodake G, 2011, J NANOELECTRON OPTOE, V6, P268, DOI 10.1166/jno.2011.1166
  • Ghosh S, 2011, J NANOMATER, V2011, DOI 10.1155/2011/354793
  • Goldie Oza, 2012, Advances in Applied Science Research, V3, P1405
  • Gonzalez-Ballesteros N, 2017, COLLOID SURFACE B, V153, P190, DOI 10.1016/j.colsurfb.2017.02.020
  • Grasso G, 2020, NANOMATERIALS-BASEL, V10, DOI 10.3390/nano10010011
  • Jalal M, 2018, NANOMATERIALS-BASEL, V8, DOI 10.3390/nano8080586
  • Jayaseelan C, 2013, IND CROP PROD, V45, P423, DOI 10.1016/j.indcrop.2012.12.019
  • JOHN DM, 2003, FRESHWATER ALGAL FLO .
  • Jorgensen JH, 2015, MANUAL CLIN MICROBIO, P1253, DOI [DOI 10.1128/9781555817381.CH71, 10.1128/9781555817381, 10.1128/9781555817381.ch71]
  • Kalabegishvili T, 2012, JINRE14201231 FRANK
  • Kalabegishvili T. L., 2012, MATER SCI ENG, V2, P164
  • Kavaz D, 2011, NANOBULTEN AYLK NANO, V13, P12
  • Khalil MMH, 2012, ARAB J CHEM, V5, P431, DOI 10.1016/j.arabjc.2010.11.011
  • Khan AU, 2019, BIOPROC BIOSYST ENG, V42, P1, DOI 10.1007/s00449-018-2012-2
  • Khan I, 2019, ARAB J CHEM, V12, P908, DOI 10.1016/j.arabjc.2017.05.011
  • Konishi Y, 2006, HYDROMETALLURGY, V81, P24, DOI 10.1016/j.hydromet.2005.09.006
  • Kouvaris P, 2012, MATER LETT, V76, P18, DOI 10.1016/j.matlet.2012.02.025
  • Kumar B, 2016, ADV NAT SCI-NANOSCI, V7, DOI 10.1088/2043-6262/7/2/025013
  • Menon Soumya, 2017, Resource-Efficient Technologies, V3, P516, DOI 10.1016/j.reffit.2017.08.002
  • Mnisi RL, 2016, PURE APPL CHEM, V88, P83, DOI 10.1515/pac-2015-1001
  • Nadeem M, 2017, GREEN CHEM LETT REV, V10, P216, DOI 10.1080/17518253.2017.1349192
  • Nidhin M, 2008, B MATER SCI, V31, P93, DOI 10.1007/s12034-008-0016-2
  • Noruzi M, 2011, SPECTROCHIM ACTA A, V79, P1461, DOI 10.1016/j.saa.2011.05.001
  • Ozturk BY, 2020, PROCESS BIOCHEM, V89, P208, DOI 10.1016/j.procbio.2019.10.027
  • Parial D, 2012, EUR J PHYCOL, V47, P22, DOI 10.1080/09670262.2011.653406
  • Patra JK, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.00167
  • Princy KF, 2018, J NANOSTRUCTURE CHEM, V8, P333, DOI 10.1007/s40097-018-0277-2
  • Raghunandan Deshpande, 2011, Cancer Nanotechnol, V2, P57, DOI 10.1007/s12645-011-0014-8
  • Rajeshkumar S, 2017, MECH MAT SCI ENG, V9, DOI [10.2412/mmse.95.26.479, DOI 10.2412/MMSE.95.26.479]
  • Rajeshkumar S, 2013, J NANOSTRUCTURE CHEM, V3, DOI 10.1186/2193-8865-3-44
  • Shankar PD, 2016, ENZYME MICROB TECH, V95, P28, DOI 10.1016/j.enzmictec.2016.10.015
  • Singaravelu G, 2007, COLLOID SURFACE B, V57, P97, DOI 10.1016/j.colsurfb.2007.01.010
  • Spencer-Milnes X, 2019, THESIS .
  • Suganya KSU, 2015, MAT SCI ENG C-MATER, V47, P351, DOI 10.1016/j.msec.2014.11.043
  • Swain S, 2016, BIONANOSCIENCE, V6, P205, DOI 10.1007/s12668-016-0208-y
  • Tao C, 2018, LETT APPL MICROBIOL, V67, P537, DOI 10.1111/lam.13082
  • Tikariha S, 2012, INT J PHARM SCI RES, V3, P1603, DOI 10.13040/IJPSR.0975-8232.3(6).1603-15
  • Tripathi A., 2010, INT J PHARM TECH RES, V2, P2116
  • Tsarenko PM, 2006, ALGAE UKRAINE DIVERS .
  • Velmurugan P, 2014, BIOPROC BIOSYST ENG, V37, P1935, DOI 10.1007/s00449-014-1169-6
  • Venkatesan J, 2014, BIOPROC BIOSYST ENG, V37, P1591, DOI 10.1007/s00449-014-1131-7
  • Vigneron F, 2016, CR CHIM, V19, P192, DOI 10.1016/j.crci.2015.11.015
  • Wani IA, 2013, COLLOID SURFACE B, V101, P162, DOI 10.1016/j.colsurfb.2012.06.005
  • Wehr JD, 2003, AQUATIC ECOLOGY SERI .
  • Xie JP, 2007, SMALL, V3, P672, DOI 10.1002/smll.200600612
  • Yang X, 2015, CHEM REV, V115, P10410, DOI 10.1021/acs.chemrev.5b00193
  • Zayadi RA, 2020, J ENVIRON CHEM ENG, V8, DOI 10.1016/j.jece.2020.103843
  • Zuo S, 2011, J NANOMATER, V2011, DOI 10.1155/2011/382068