Proximity mapping of the microtubule plus-end tracking protein SLAIN2 using the BioID approach

The centrosome is the main microtubule-organizing center of animal cells, which plays key roles in critical cellular processes ranging from cell division to cellular signaling. Accordingly, defects in the structure and function of centrosomes cause various human diseases such as cancer and primary microcephaly. To elucidate the molecular defects underlying these diseases, the biogenesis and functions of the centrosomes have to be fully understood. An essential step towards addressing these questions is the identification and functional dissection of the full repertoire of centrosome proteins. Here, we used high-resolution imaging and showed that the microtubule plus-end tracking protein SLAIN2 localizes to the pericentriolar material at the proximal end of centrioles. To gain insight into its cellular functions and mechanisms, we applied in vivo proximity-dependent biotin identification to SLAIN2 and generated its proximity interaction map. Gene ontology analysis of the SLAIN2 interactome revealed extensive interactions with centriole duplication, ciliogenesis, and microtubule-associated proteins, including previously characterized and uncharacterized interactions. Collectively, our results define SLAIN2 as a component of pericentriolar material and provide an important resource for future studies aimed at elucidating SLAIN2 functions at the centrosome.

___

  • Akhmanova A, Steinmetz MO (2008). Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nature Reviews Molecular Cell Biology 9:309-322. doi: 10.1038/ nrm2369
  • Akhmanova A, Steinmetz MO (2010). Microtubule +TIPs at a glance. Journal of Cell Science 123:3415-3419. doi: 10.1242/jcs.062414
  • Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, et al. (2003). Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426:570-574. doi: 10.1038/nature02166
  • Bagchi S, Fredriksson R, Wallen-Mackenzie A (2015). In Situ Proximity Ligation Assay (PLA). Methods in Molecular Biology 1318:149-159. doi: 10.1007/978-1-4939-2742-5_15
  • Bettencourt-Dias M, Glover DM (2007). Centrosome biogenesis and function: centrosomics brings new understanding. Nature Reviews Molecular Cell Biology 8:451-463. doi: 10.1038/ nrm2180
  • Bettencourt-Dias M, Hildebrandt F, Pellman D, Woods G, Godinho SA (2011). Centrosomes and cilia in human disease. Trends in Genetics 27:307-315. doi: 10.1016/j.tig.2011.05.004
  • Bouchet BP, Noordstra I, van Amersfoort M, Katrukha EA, Ammon YC et al. (2016). Mesenchymal cell invasion requires cooperative regulation of persistent microtubule Growth by SLAIN2 and CLASP1. Developmental Cell 39:708-723. doi: 10.1016/j.devcel.2016.11.009
  • Boveri T (2008). Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. Journal of Cell Science 121 Suppl 1:1-84. doi: 10.1242/ jcs.025742
  • Braun DA, Hildebrandt F (2017). Ciliopathies. Cold Spring Harbor Perspectives in Biology 9:doi: 10.1101/cshperspect.a028191
  • Chavali PL, Putz M, Gergely F (2014). Small organelle, big responsibility: the role of centrosomes in development and disease. Philosophical Transactions of the Royal Society of B: Biological Sciences 369. doi: 10.1098/rstb.2013.0468
  • Dobbelaere J, Josue F, Suijkerbuijk S, Baum B, Tapon N, et al. (2008). A genome-wide RNAi screen to dissect centriole duplication and centrosome maturation in Drosophila. PLoS Biology 6:e224. doi: 10.1371/journal.pbio.0060224
  • Firat-Karalar EN, Rauniyar N, Yates JR, 3rd, Stearns T (2014). Proximity interactions among centrosome components identify regulators of centriole duplication. Current Biology 24:664-670. doi: 10.1016/j.cub.2014.01.067
  • Firat-Karalar EN, Sante J, Elliott S, Stearns T (2014). Proteomic analysis of mammalian sperm cells identifies new components of the centrosome. Journal of Cell Science doi: 10.1242/jcs.157008
  • Firat-Karalar EN, Stearns T (2015). Probing mammalian centrosome structure using BioID proximity-dependent biotinylation. Methods in Cell Biology 129:153-170. doi: 10.1016/ bs.mcb.2015.03.016
  • Firat-Karalar EN (2018). The ciliopathy gene product Cep290 is required for primary cilium formation and microtubule network organization. Turkish Journal of Biology 42:371-381. doi: 10.3906/biy-1805-25
  • Firat-Karalar EN (2018). The ciliopathy gene product Cep290 is required for primary cilium formation and microtubule network organization. Turkish Journal of Biology 42:371-381. doi: 10.3906/biy-1805-25
  • Godinho SA, Picone R, Burute M, Dagher R, Su Y et al. (2014). Oncogene-like induction of cellular invasion from centrosome amplification. Nature 510:167-171. doi: 10.1038/nature13277
  • Gupta GD, Coyaud E, Goncalves J, Mojarad BA, Liu Y et al. (2015). A dynamic protein interaction landscape of the human centrosome-cilium interface. Cell 163:1484-1499. doi: 10.1016/j. cell.2015.10.065
  • Hatch EM, Kulukian A, Holland AJ, Cleveland DW, Stearns T (2010). Cep152 interacts with Plk4 and is required for centriole duplication. Journal of Cell Biology 191:721-729. doi: 10.1083/ jcb.201006049
  • Hildebrandt F, Benzing T, Katsanis N (2011). Ciliopathies. New England Journal of Medicine 364:1533-1543. doi: 10.1056/ NEJMra1010172
  • Jakobsen L, Schroder JM, Larsen KM, Lundberg E, Andersen JS (2013). Centrosome isolation and analysis by mass spectrometry-based proteomics. Methods in Enzymology 525:371-393. doi: 10.1016/ B978-0-12-397944-5.00018-3
  • Jiang K, Hua S, Mohan R, Grigoriev I, Yau KW et al. (2014). Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition. Developmental Cell 28:295-309. doi: 10.1016/j.devcel.2014.01.001
  • Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q et al. (2016). Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research 44:W90-97. doi: 10.1093/nar/gkw377
  • Lambert JP, Tucholska M, Go C, Knight JD, Gingras AC (2014). Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes. Journal of Proteomics doi: 10.1016/j.jprot.2014.09.011
  • Luders J (2012). The amorphous pericentriolar cloud takes shape. Nature Cell Biology 14:1126-1128. doi: 10.1038/ncb2617
  • Luders J, Stearns T (2007). Microtubule-organizing centres: a reevaluation. Nature Reviews Molecular Cell Biology 8:161-167. doi: 0.1038/nrm2100
  • Malicki JJ, Johnson CA (2017). The cilium: cellular antenna and central processing unit. Trends in Cell Biology 27:126-140. doi: 10.1016/j.tcb.2016.08.002
  • Marteil G, Guerrero A, Vieira AF, de Almeida BP, Machado P et al. (2018). Over-elongation of centrioles in cancer promotes centriole amplification and chromosome missegregation. Nature Communications 9:1258. doi: 10.1038/s41467-018- 03641-x
  • Mellacheruvu D, Wright Z, Couzens AL, Lambert JP, St-Denis NA et al. (2013). The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nature Methods 10:730- 736. doi: 10.1038/nmeth.2557
  • Mirvis M, Stearns T, James Nelson W (2018). Cilium structure, assembly, and disassembly regulated by the cytoskeleton. Biochemical Journal 475:2329-2353. doi: 10.1042/ BCJ20170453
  • Muller EG, Snydsman BE, Novik I, Hailey DW, Gestaut DR, et al. (2005). The organization of the core proteins of the yeast spindle pole body. Molecular Biology of the Cell 16:3341-3352. doi: 10.1091/mbc.E05-03-0214
  • Nigg EA, Cajanek L, Arquint C (2014). The centrosome duplication cycle in health and disease. FEBS Letters 588:2366-2372. doi: 10.1016/j.febslet.2014.06.030
  • Nigg EA, Holland AJ (2018). Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nature Reviews Molecular Cell Biology 19:297-312. doi: 10.1038/ nrm.2017.127
  • Nigg EA, Raff JW (2009). Centrioles, centrosomes, and cilia in health and disease. Cell 139:663-678. doi: 10.1016/j.cell.2009.10.036 Odabasi E, Gul S, Kavakli IH, Firat-Karalar EN (2019). Centriolar satellites are required for efficient ciliogenesis and ciliary content regulation. EMBO Reports pii: e47723. doi: 10.15252/ embr.201947723
  • Prosser SL, Pelletier L (2020). Centriolar satellite biogenesis and function in vertebrate cells. Journal of Cell Science 133:doi: 10.1242/jcs.239566
  • Roux KJ, Kim DI, Burke B (2013). BioID: a screen for protein-protein interactions. Current Protocols in Protein Science 74:Unit 19 23. doi: 10.1002/0471140864.ps1923s74
  • Schmidt TI, Kleylein-Sohn J, Westendorf J, Le Clech M, Lavoie SB et al. (2009). Control of centriole length by CPAP and CP110. Current Biology 19:1005-1011. doi: 10.1016/j.cub.2009.05.016
  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT et al. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13:2498-2504. doi: 10.1101/gr.1239303
  • Sonnen KF, Schermelleh L, Leonhardt H, Nigg EA (2012). 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biology Open 1:965- 976. doi: 10.1242/bio.20122337
  • Spektor A, Tsang WY, Khoo D, Dynlacht BD (2007). Cep97 and CP110 suppress a cilia assembly program. Cell 130:678-690. doi: 10.1016/j.cell.2007.06.027
  • Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A et al. (2006). BioGRID: a general repository for interaction datasets. Nucleic Acids Research 34:D535-539. doi: 10.1093/nar/gkj109
  • Uzbekov R, Alieva I (2018). Who are you, subdistal appendages of centriole? Open Biology 8:doi: 10.1098/rsob.180062
  • van der Vaart B, Franker MA, Kuijpers M, Hua S, Bouchet BP et al. (2012). Microtubule plus-end tracking proteins SLAIN1/2 and ch-TOG promote axonal development. Journal of Neuroscience 32:14722-14728. doi: 10.1523/JNEUROSCI.1240-12.2012
  • van der Vaart B, Manatschal C, Grigoriev I, Olieric V, Gouveia SM et al. (2011). SLAIN2 links microtubule plus end-tracking proteins and controls microtubule growth in interphase. Journal of Cell Biology 193:1083-1099. doi: 10.1083/jcb.201012179
  • Zhuang M, Zhao S, Jiang Z, Wang S, Sun P et al. (2019). MALAT1 sponges miR-106b-5p to promote the invasion and metastasis of colorectal cancer via SLAIN2 enhanced microtubules mobility. EBioMedicine 41:286-298. doi: 10.1016/j.ebiom.2018.12.049
  • Zybailov B, Mosley AL, Sardiu ME, Coleman MK, Florens L et al. (2006). Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. Journal of Proteome Research 5:2339-2347. doi: 10.1021/pr060161n