Helicobacter-stimulated IL-10-producing B cells suppress differentiation of lipopolysaccharide/Helicobacter felis-activated stimulatory dendritic cells

Regulatory B cells (Bregs) produce antiinflammatory cytokines and inhibits proinflammatory response. Recently, immunosuppressive roles of Bregs in the effector functions of dendritic cells (DCs) were demonstrated. However, cross talk between Bregs and DCs in Helicobacter infection remains unknown. Here, we showed that direct stimulation of bone marrow-derived DCs (BMDCs) with Helicobacter felis (H. felis) antigen upregulates their CD86 surface expression and causes the production of interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), interleukin-12 (IL-12), and interleukin-10 (IL-10). Furthermore, prestimulation of DCs with supernatants derived from both Helicobacter-stimulated IL-10– B (Hfstim-IL-10– B) or IL-10+ B (Hfstim-IL-10+) cells suppresses the secretion of TNF-α and IL-6, but does not affect the expression of CD86 and secretion of IL-12 by lipopolysaccharide (LPS) or H. felisactivated BM-DCs. Remarkably, soluble factors secreted by Hfstim-IL-10– B cells, but not by Hfstim-IL-10+ B cells, suppress the secretion of IL-10 by BM-DCs upon subsequent LPS stimulation. In contrast, prestimulation with BM-DCs with supernatants of Hfstim-IL-10+ B cells before H. felis antigen stimulation induces significantly their IL-10 production. Collectively, our data indicated that prestimulation with soluble factors secreted by Hfstim-IL-10+ B cells, DCs exhibit a tolerogenic phenotype in response to LPS or Helicobacter antigen by secreting high levels of IL-10, but decreased levels of IL-6 and TNF-α.

___

  • Adnan E, 2016, CLIN IMMUNOL, V173, P96, DOI 10.1016/j.clim.2016.09.007
  • Banchereau J, 2000, ANNU REV IMMUNOL, V18, P767, DOI 10.1146/annurev.immunol.18.1.767
  • Baumgart DC, 2011, CLIN EXP IMMUNOL, V166, P46, DOI 10.1111/j.1365-2249.2011.04439.x
  • Bettelli E, 2006, NATURE, V441, P235, DOI 10.1038/nature04753
  • Carter NA, 2012, ARTHRITIS RES THER, V14, DOI 10.1186/ar3736
  • Carter NA, 2011, J IMMUNOL, V186, P5569, DOI 10.4049/jimmunol.1100284
  • de la Guardia AH, 2013, FRONT MICROBIOL, V4, DOI 10.3389/fmicb.2013.00236
  • Drakes ML, 2006, INFECT IMMUN, V74, P4624, DOI 10.1128/IAI.00289-06
  • Fillatreau S, 2002, NAT IMMUNOL, V3, P944, DOI 10.1038/ni833
  • Fogel-Petrovic M, 2007, INT IMMUNOPHARMACOL, V7, P1924, DOI 10.1016/j.intimp.2007.07.003
  • Hafsi N, 2004, J IMMUNOL, V173, P1249, DOI 10.4049/jimmunol.173.2.1249
  • Horvath DJ, 2012, FRONT IMMUNOL, V3, DOI 10.3389/fimmu.2012.00056
  • Jiang HR, 2002, J LEUKOCYTE BIOL, V72, P978
  • Kabisch R, 2016, J IMMUNOL, V196, P4246, DOI 10.4049/jimmunol.1501062
  • Kabisch R, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0104804
  • Kao JY, 2006, AM J PHYSIOL-GASTR L, V291, pG73, DOI 10.1152/ajpgi.00139.2005
  • Kao JY, 2010, GASTROENTEROLOGY, V138, P1046, DOI 10.1053/j.gastro.2009.11.043
  • Li X, 2019, INFLAMMATION, V42, P1611, DOI 10.1007/s10753-019-01022-0
  • Lowes MA, 2005, P NATL ACAD SCI USA, V102, P19057, DOI 10.1073/pnas.0509736102
  • Maddur MS, 2012, BLOOD, V119, P3863, DOI 10.1182/blood-2012-02-408948
  • Maerz JK, 2020, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.03093
  • Mangan PR, 2006, NATURE, V441, P231, DOI 10.1038/nature04754
  • Matheu MP, 2008, JOVE-J VIS EXP, DOI [10.3791/773, DOI 10.3791/773]
  • Matsumoto M, 2014, IMMUNITY, V41, P1040, DOI 10.1016/j.immuni.2014.10.016
  • Mauri C, 2003, J EXP MED, V197, P489, DOI 10.1084/jem.20021293
  • Mizoguchi A, 2002, IMMUNITY, V16, P219, DOI 10.1016/S1074-7613(02)00274-1
  • Morva A, 2012, BLOOD, V119, P106, DOI 10.1182/blood-2011-06-360768
  • Mou Hai-bo, 2004, J Zhejiang Univ Sci, V5, P1239, DOI 10.1631/jzus.2004.1239
  • Moyat M, 2014, WORLD J GASTROENTERO, V20, P5583, DOI 10.3748/wjg.v20.i19.5583
  • Oertli M, 2013, P NATL ACAD SCI USA, V110, P3047, DOI 10.1073/pnas.1211248110
  • Oertli M, 2012, J CLIN INVEST, V122, P1082, DOI 10.1172/JCI61029
  • Peek RM, 2010, PHYSIOL REV, V90, P831, DOI 10.1152/physrev.00039.2009
  • Rizzuti D, 2015, J INNATE IMMUN, V7, P199, DOI 10.1159/000368232
  • Ronet C, 2010, J IMMUNOL, V184, P886, DOI 10.4049/jimmunol.0901114
  • Rutella S, 2006, BLOOD, V108, P1435, DOI 10.1182/blood-2006-03-006403
  • Said SS, 2018, MOL IMMUNOL, V96, P48, DOI 10.1016/j.molimm.2018.02.010
  • Sayi A, 2011, J IMMUNOL, V186, P878, DOI 10.4049/jimmunol.1002269
  • Sayi A, 2009, J IMMUNOL, V182, P7085, DOI 10.4049/jimmunol.0803293
  • Sun CM, 2005, IMMUNITY, V22, P467, DOI 10.1016/j.immuni.2005.02.008
  • Takenaka MC, 2017, SEMIN IMMUNOPATHOL, V39, P113, DOI 10.1007/s00281-016-0587-8
  • Veldhoen M, 2006, IMMUNITY, V24, P179, DOI 10.1016/j.immuni.2006.01.001
  • Wolf SD, 1996, J EXP MED, V184, P2271, DOI 10.1084/jem.184.6.2271
  • Zhang M, 2010, GUT MICROBES, V1, P325, DOI 10.4161/gmic.1.5.13052
  • Zhang XM, 2007, J EXP MED, V204, P1107, DOI 10.1084/jem.20062013