Cancer stem cells: emerging actors in both basic and clinical cancer research

Cancer stem cells (CSCs) are a small subset of cancer cells within a tumor that are responsible for tumorigenesis and contribute to drug resistance. The CSC displays an anchorage-independent survival, active DNA-repair capacity, and relative quiescence and is capable of self-renewing and maintaining tumor growth and heterogeneity. At the molecular level, there are several signaling pathways (e.g., Wnt/Beta-catenin, Notch, and Hedgehog) to control CSC properties and alteration of these pathways has been recognized as an essential step for CSC transformation. Emerging evidence suggests that CSCs are clinically relevant. These cells are resistant to conventional chemotherapy and radiation treatment. Therefore, CSCs are thought to be the most important targets for anticancer therapy. In this review, we describe the characteristics of CSCs and how to isolate them based on some of their properties, as well as their importance in oncology.

Cancer stem cells: emerging actors in both basic and clinical cancer research

Cancer stem cells (CSCs) are a small subset of cancer cells within a tumor that are responsible for tumorigenesis and contribute to drug resistance. The CSC displays an anchorage-independent survival, active DNA-repair capacity, and relative quiescence and is capable of self-renewing and maintaining tumor growth and heterogeneity. At the molecular level, there are several signaling pathways (e.g., Wnt/Beta-catenin, Notch, and Hedgehog) to control CSC properties and alteration of these pathways has been recognized as an essential step for CSC transformation. Emerging evidence suggests that CSCs are clinically relevant. These cells are resistant to conventional chemotherapy and radiation treatment. Therefore, CSCs are thought to be the most important targets for anticancer therapy. In this review, we describe the characteristics of CSCs and how to isolate them based on some of their properties, as well as their importance in oncology.

___

  • Ito et al., 2008; Essers et al., 2009
  • All-trans retinoic acid (ATRA)
  • Inhibition of ALDH activity
  • Croker et al., 2012 Curcumin
  • Inhibition of cell migration, invasion, and colony formation in vitro and tumor
  • growth and liver metastasis in vivo; inhibitor of EMT
  • Chen CC et al., 2013; Chen
  • WC et al., 2013 Niclosamide
  • Inhibition of stemness signaling pathways (Wnt, Notch, and Hh)
  • Wang et al., 2013 Metformin
  • Inhibition of tumor growth
  • Hirsch et al., 2009 Piperine Sulforaphane
  • Inhibition mammosphere formation and percent of ALDH+ cells
  • Decreased ALDH+ cell population and reduced size and number of primary mammospheres
  • Kakarala et al., 2010
  • Li et al., 2010 Cyclopamine Salinomycin
  • Inhibition of Hh signaling pathway
  • Inhibition of tumorsphere formation and expression of Oct-4, Nanog, and Sox2
  • Inhibition of mammary tumor growth in vivo and induction of increased
  • epithelial differentiation of tumor cells, loss of expression of breast cancer stem
  • cell genes identified from breast tissues isolated directly from patients
  • Bar et al., 2007 Wang, 2011
  • Gupta et al., 2009 Silibinin
  • Inhibition of self-renewal and sphere formation by suppressing the PP2Ac/AKT Ser473/mTOR pathway
  • Wang et al., 2012 Resveratrol 
  • Inhibition of pluripotency maintaining factors and EMT
  • Shankar et al., 2011
  • Table CSC clinical trials. This table was generated from the website clinicaltrials.gov. Study number Year Title Recruitment
  • Clinical trial number #1 2006
  • Isolation and Characterization of Mammary Stem Cells Completed NCT00340392 #2 2008
  • Biopsy of Human Tumors for Cancer Stem Cell Characterization: A Feasibility Study Completed NCT00610415 #3 #4 2011
  • Impact of Pretreatment With Metformin on Colorectal Cancer Stem Cells (CCSC) and Related
  • Pharmacodynamic Markers Recruiting Terminated NCT01440127 #5 2011
  • Cancer Stem Cell Biomarkers as a Predictor of Response to Trastuzumab in Samples from
  • Patients with Breast Cancer Previously Treated in the NSABP-B-31 Trial Active, not recruiting #6 2011
  • Cancer Stem Cell Markers and Prognostic Markers in Circulating Tumor Cells Recruiting NCT01286883 #7 2012
  • Invasiveness and Chemoresistance of Cancer Stem Cells in Colon Cancer Recruiting NCT01577511 #8 2013
  • A Comprehensive Study to Isolate Tumor-Initiating Cells from Human Epithelial Malignancies Recruiting NCT01060319 #9 2013
  • Cancer Stem Cells in Multiple Myeloma Recruiting NCT01820546 #10 2014
  • The Immunotherapy of Nasopharyngeal Cancer Using Cancer Stem Cells Vaccine Recruiting NCT02115958 #11 2014
  • Cancer Stem Cells Vaccine Therapy in Treating Hepatocellular Cancer Patients Recruiting NCT02089919 #12 2014
  • (2003). Prospective identification of tumorigenic breast cancer
  • cells. P Natl Acad Sci USA 100: 3983–3988. Bar EE, Chaudhry A, Lin A, Fan X, Schreck K, Matsui W, Piccirillo
  • S, Vescovi AL, DiMeco F, Olivi A et al. (2007). Cyclopamine
  • mediated hedgehog pathway inhibition depletes stem-like
  • cancer cells in glioblastoma. Stem Cells 25: 2524–2533. Bonnet D, Dick JE (1997). Human acute myeloid leukemia is
  • organized as a hierarchy that originates from a primitive
  • hematopoietic cell. Nat Med 3: 730–737. Brescia P, Ortensi B, Fornasari L, Levi D, Broggi G, Pelicci G (2013).
  • CD133 is essential for glioblastoma stem cell maintenance.
  • Stem Cells 31: 857–869. Brescia P, Richichi C, Pelicci G (2012). Current strategies for
  • identification of glioma stem cells: adequate or unsatisfactory?
  • J Oncol 2012: 376894. Broadley KW, Hunn MK, Farrand KJ, Price KM, Grasso C, Miller
  • RJ, Hermans IF, McConnell MJ (2011). Side population is not
  • necessary or sufficient for a cancer stem cell phenotype in
  • glioblastoma multiforme. Stem Cells 29: 452–461. Burkert J, Otto WR, Wright NA (2008). Side populations of
  • gastrointestinal cancers are not enriched in stem cells. J Pathol 214: 564–573. Cariati M, Naderi A, Brown JP, Smalley MJ, Pinder SE, Caldas C,
  • Purushotham AD (2008). Alpha-6 integrin is necessary for the
  • tumourigenicity of a stem cell-like subpopulation within the
  • MCF7 breast cancer cell line. Int J Cancer 122: 298–304. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA,
  • Rodrigues LO, Brooks M, Reinhardt F, Su Y, Polyak K et al.
  • (2011). Normal and neoplastic nonstem cells can spontaneously
  • convert to a stem-like state. P Natl Acad Sci USA 108: 7950– 7955. Chang HW, Roh JL, Jeong EJ, Lee SW, Kim SW, Choi SH, Park SK,
  • Kim SY (2008). Wnt signaling controls radiosensitivity via
  • cyclooxygenase-2-mediated Ku expression in head and neck
  • cancer. Int J Cancer 122: 100–107. Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni
  • B, Houvenaeghel G, Extra JM, Bertucci F, Jacquemier J et al.
  • (2010). Aldehyde dehydrogenase 1-positive cancer stem cells
  • mediate metastasis and poor clinical outcome in inflammatory
  • breast cancer. Clin Cancer Res 16: 45–55. Chen CC, Sureshbabul M, Chen HW, Lin YS, Lee JY, Hong QS, Yang
  • YC, Yu SL (2013). Curcumin suppresses metastasis via Sp-1,
  • FAK inhibition, and E-cadherin upregulation in colorectal
  • cancer. Evid Based Complement Alternat Med 2013: 541695. Chen K, Huang YH, Chen JL (2013). Understanding and targeting
  • cancer stem cells: therapeutic implications and challenges.
  • Acta Pharmacol Sin 34: 732–740. Chen WC, Lai YA, Lin YC, Ma JW, Huang LF, Yang NS, Ho CT,
  • Kuo SC, Way TD (2013). Curcumin suppresses doxorubicin
  • induced epithelial-mesenchymal transition via the inhibition
  • of TGF-β and PI3K/AKT signaling pathways in triple-negative
  • breast cancer cells. J Agric Food Chem 61: 11817–11824. Chen YC, Chen YW, Hsu HS, Tseng LM, Huang PI, Lu KH, Chen
  • DT, Tai LK, Yung MC, Chang SC et al. (2009). Aldehyde
  • dehydrogenase 1 is a putative marker for cancer stem cells
  • in head and neck squamous cancer. Biochem Biophys Res
  • Commun 385: 307–313. Cheung AM, Wan TS, Leung JC, Chan LY, Huang H, Kwong YL,
  • Liang R, Leung AY (2007). Aldehyde dehydrogenase activity in
  • leukemic blasts defines a subgroup of acute myeloid leukemia
  • with adverse prognosis and superior NOD/SCID engrafting
  • potential. Leukemia 21: 1423–1430. Clarke MF, Fuller M (2006). Stem cells and cancer: two faces of eve.
  • Cell 124: 1111–1115. Collins AT,  Berry PA,  Hyde C,  Stower MJ,  Maitland NJ (2005).
  • Prospective identification of tumorigenic prostate cancer stem
  • cells. Cancer Res 65: 10946–10951. Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ, Labosky
  • PA, Simon MC, Keith B (2006). HIF-2α regulates Oct-4: effects
  • of hypoxia on stem cell function, embryonic development, and
  • tumor growth. Genes Dev 20: 557–570. Croker AK, Allan AL (2012). Inhibition of aldehyde dehydrogenase
  • (ALDH) activity reduces chemotherapy and radiation
  • resistance of stem-like ALDHhiCD44+ human breast cancer
  • cells. Breast Cancer Res Treat 133: 75–87. Curley MD, Therrien VA, Cummings CL, Sergent PA, Koulouris CR,
  • Friel AM, Roberts DJ, Seiden MV, Scadden DT, Rueda BR et
  • al. (2009). CD133 expression defines a tumor initiating cell
  • population in primary human ovarian cancer. Stem Cells 27: 2875–2883. Das B, Tsuchida R, Malkin D, Koren G, Baruchel S, Yeger H (2008).
  • Hypoxia enhances tumor stemness by increasing the invasive
  • and tumorigenic side population fraction. Stem Cells 26: 1818– 1830. Dean M, Fojo T, Bates S (2005). Tumour stem cells and drug resistance. Nat Rev 5: 275–284. Di Croce L, Pelicci PG (2003). Tumour-associated hypermethylation: silencing E-cadherin expression enhances invasion and metastasis. Eur J Cancer 39: 413–414. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF,
  • Kawamura MJ, Wicha MS (2003). In vitro propagation and
  • transcriptional profiling of human mammary stem/progenitor
  • cells. Genes Dev 17: 1253–1270. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello
  • C, Ruco L, Peschle C, De Maria R (2008). Identification and
  • expansion of the tumorigenic lung cancer stem cell population.
  • Cell Death Differ 15: 504–514. Erba E, Ubezio P, Broggini M, Ponti M, D’Incalci M (1988). DNA
  • damage, cytotoxic effect and cell-cycle perturbation of Hoechst
  • 33342 on L1210 cells in vitro. Cytometry 9: 1–6. Essers MA, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U,
  • Duchosal MA, Trumpp A (2009). IFNα activates dormant
  • haematopoietic stem cells in vivo. Nature 458: 904–908. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van
  • Belle PA, Xu X, Elder DE, Herlyn M (2005). A tumorigenic
  • subpopulation with stem cell properties in melanomas, Cancer
  • Res 65: 9328–9337. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C,
  • Rebelo M, Parkin DM, Forman D, Bray F (2013). GLOBOCAN
  • 2012 v0, Cancer Incidence and Mortality Worldwide: IARC
  • CancerBase No. 11 [Internet]. Lyon, France: International
  • Agency for Research on Cancer. Available at http://globocan. iarc.fr. Gentles AJ, Plevritis SK, Majeti R, Alizadeh AA (2010). Association
  • of a leukemic stem cell gene expression signature with clinical
  • outcomes in acute myeloid leukemia. JAMA 304: 2706–2715. Giampieri R, Scartozzi M, Loretelli C, Piva F, Mandolesi A, Lezoche
  • G, Del Prete M, Bittoni A, Faloppi L, Bianconi M et al. (2013).
  • Cancer stem cell gene profile as predictor of relapse in high risk
  • stage II and stage III, radically resected colon cancer patients.
  • PLoS One 8: e72843. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher
  • J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S et al.
  • (2007). ALDH1 is a marker of normal and malignant human
  • mammary stem cells and a predictor of poor clinical outcome.
  • Cell Stem Cell 1: 555–567. Gupta GP, Massagué J (2006). Cancer metastasis: building a
  • framework. Cell 127: 679–695. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg
  • RA, Lander ES (2009). Identification of selective inhibitors
  • of cancer stem cells by high-throughput screening. Cell 138: 645–659. Gupta S, Takebe N, LoRusso P (2010). Targeting the Hedgehog
  • pathway in cancer. Ther Adv Med Oncol 2: 237–250. Hamburger AW, Salmon SE (1977). Primary bioassay of human
  • tumor stem cells. Science 197: 461–463. Han J, Fujisawa T, Husain SR, Puri RK (2014). Identification and characterization of cancer stem cells in human head and neck squamous cell carcinoma. BMC Cancer 14: 173. Han L, Shi S, Gong T, Zhang Z, Sunn X (2013). Cancer stem cells: therapeutic implications and perspectives in cancer therapy.
  • Acta Pharmaceutica Sinica B 3: 65–75. Hanahan D, Weinberg RA (2011). Hallmarks of cancer: the next
  • generation. Cell 144: 646–674. Haraguchi N, Ishii H, Mimori K, Tanaka F, Ohkuma M, Kim HM,
  • Akita H, Takiuchi D, Hatano H, Nagano H et al. (2010). CD13
  • is a therapeutic target in human liver cancer stem cells. J Clin
  • Invest 120: 3326–3339. He A, Qi W, Huang Y, Feng T, Chen J, Sun Y, Shen Z, Yao Y (2012).
  • CD133 expression predicts lung metastasis and poor prognosis
  • in osteosarcoma patients: a clinical and experimental study.
  • Exp Ther Med 4: 435–441. Heddleston JM, Li ZZ, McLendon RE, Hjelmeland AB, Rich JN
  • (2009). The hypoxic microenvironment maintains glioblastoma
  • stem cells and promotes reprogramming towards a cancer stem
  • cell phenotype. Cell Cycle 8: 3274–3284. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K (2009). Metformin
  • selectively targets cancer stem cells, and acts together with
  • chemotherapy to block tumor growth and prolong remission.
  • Cancer Res 69: 7507–7511. Huang EH, Hynes MJ, Zhang T, Ginestier C, Dontu G, Appelman
  • H, Fields JZ, Wicha MS, Boman BM (2009). Aldehyde
  • dehydrogenase 1 is a marker for normal and malignant human
  • colonic stem cells (SC) and tracks SC overpopulation during
  • colon tumorigenesis. Cancer Res 69: 3382–3389. Immervoll H, Hoem D, Sakariassen PØ, Steffensen OJ, Molven A
  • (2008). Expression of the stem cell marker CD133 in pancreas
  • and pancreatic ductal adenocarcinomas. BMC Cancer 8: 48. Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y,
  • Rosenblatt J, Avigan DE, Teruya-Feldstein J, Pandolfi PP (2008).
  • PML targeting eradicates quiescent leukaemia-initiating cells.
  • Nature 453: 1072–1078. Jena RK, Kansurkar SS, Swain TR (2012). Cancer stem cell—essence
  • of tumorigenesis. J Carcinogen Mutagen S1: 006. Kakarala M, Brenner DE, Korkaya H, Cheng C, Tazi K, Ginestier C,
  • Liu S, Dontu G, Wicha MS (2010). Targeting breast stem cells
  • with the cancer preventive compounds curcumin and piperine.
  • Breast Cancer Res Treat 122: 777–785. Kim Y, Kim KH, Lee J, Lee YA, Kim M, Lee SJ, Park K, Yang H,
  • Jin J, Joo KM et al. (2012). Wnt activation is implicated in
  • glioblastoma radioresistance. Lab Invest 92: 466–473. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes
  • J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994). A cell
  • initiating human acute myeloid leukemia after transplantation
  • into SCID mice. Nature 367: 645–648. Leaf C (2013). The Truth in Small Doses: Why We’re Losing the War
  • on Cancer–and How to Win It. 1st ed. New York, NY, USA:
  • Simon & Schuster. Li L, Borodyansky L, Yang Y (2009). Genomic instability en route to and from cancer stem cells. Cell Cycle 8: 1000–1002. Li Y, Maitah MY, Ahmad A, Kong D, Bao B, Sarkar FH (2012).
  • Targeting the Hedgehog signaling pathway for cancer therapy.
  • Expert Opin Ther Targets 16: 49–66. Li Y, Zhang T, Korkaya H, Liu S, Lee HF, Newman B, Yu Y, Clouthier
  • SG, Schwartz SJ, Wicha MS et al. (2010). Sulforaphane, a
  • dietary component of broccoli/broccoli sprouts, inhibits breast
  • cancer stem cells. Clin Cancer Res 16: 2580–2590. Li Z, Rich JN (2010). Hypoxia and hypoxia inducible factors in
  • cancer stem cell maintenance. Curr Top Microbiol Immunol 345: 21–30. Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P,
  • Wicha MS (2006). Hedgehog signaling and Bmi-1 regulate
  • self-renewal of normal and malignant human mammary stem
  • cells. Cancer Res 66: 6063–6071. Liu Y, Nenutil R, Appleyard MV, Murray K, Boylan M, Thompson
  • AM, Coates PJ (2014). Lack of correlation of stem cell markers
  • in breast cancer stem cells. Br J Cancer 110: 2063–2071. Liu Z, Bandyopadhyay A, Nichols RW, Wang L, Hinck AP, Wang S,
  • Sun LZ (2012). Blockade of autocrine TGF-β signaling inhibits
  • stem cell phenotype, survival, and metastasis of murine breast
  • cancer cells. J Stem Cell Res Ther 2: 1–8. Lobba AR, Forni MF, Carreira AC, Sogayar MC (2012). Differential
  • expression of CD90 and CD14 stem cell markers in malignant
  • breast cancer cell lines. Cytometry 81: 1084–1091. Luo Y, Dallaglio K, Chen Y, Robinson WA, Robinson SE, McCarter
  • MD, Wang J, Gonzalez R, Thompson DC, Norris DA et al.
  • (2012). ALDH1A isozymes are markers of human melanoma
  • stem cells and potential therapeutic targets. Stem Cells 30: 2100–2113. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY,
  • Brooks M, Reinhard F, Zhang CC, Shipitsin M et al. (2008).
  • The epithelial–mesenchymal transition generates cells with
  • properties of stem cells. Cell 133: 704–715. Medema JP (2013). Cancer stem cells: the challenges ahead. Nat Cell
  • Biol 15: 338–344. Mitsutake N, Iwao A, Nagai K, Namba H, Ohtsuru A, Saenko V,
  • Yamashita S (2007). Characterization of side population in
  • thyroid cancer cell lines: cancer stem-like cells are enriched
  • partly but not exclusively. Endocrinology 148: 1797–1803. Nguyen LV, Vanner R, Dirks P, Eaves CJ (2012). Cancer stem cells: an
  • evolving concept. Nat Rev Cancer 12: 133–143. Nowell PC (1976). The clonal evolution of tumor cell populations.
  • Science 194: 23–28. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007). A human
  • colon cancer cell capable of initiating tumour growth in
  • immunodeficient mice. Nature 445: 106–110. Oliveira-Costa JP,  Zanetti JS,  Silveira GG, Soave DF, Oliveira
  • LR,  Zorgetto VA, Soares FA, Zucoloto S,  Ribeiro-Silva A
  • (2011). Differential expression of HIF-1α in CD44+CD24-/
  • low breast ductal carcinomas. Diagn Pathol 6: 73. Pani G, Galeotti T, Chiarugi P (2010). Metastasis: cancer cell’s escape from oxidative stress. Cancer Metastasis Rev 29: 351–378. Pardal R, Clarke MF, Morrison SJ (2003). Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3: 895–902. Pascal LE, Oudes AJ, Petersen TW, Goo YA, Walashek LS, True LD,
  • Liu AY (2007). Molecular and cellular characterization of
  • ABCG2 in the prostate. BMC Urology 7: 6. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B,
  • Tang S, Reilly JG, Chandra D, Zhou J, Claypool K et al. (2006).
  • Highly puriŞed CD44+ prostate cancer cells from xenograft
  • human tumors are enriched in tumorigenic and metastatic
  • progenitor cells. Oncogene 25: 1696–1708. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K,
  • Tang DG (2005). Side population is enriched in tumorigenic,
  • stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer
  • cells are similarly tumorigenic. Cancer Res 65: 6207–6219. Pazarbaşı A, Kasap M, Kasap H (2011). Cancer pathways. Arşiv 20:
  • 187–229 (in Turkish with English abstract). Peter ME (2010). Regulating cancer stem cells the miR way. Cell
  • Stem Cell 6: 4–6. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini
  • D, Pilotti S, Pierotti MA, Daidone MG (2005). Isolation and in
  • vitro propagation of tumorigenic breast cancer cells with stem/
  • progenitor cell properties. Cancer Res 65: 5506–5511. Ponti D, Zaffaroni N, Capelli C, Daidone MG (2006). Breast cancer
  • stem cells: an overview. Eur J Cancer 42: 1219–1224. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan
  • MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE (2007).
  • Identification of a subpopulation of cells with cancer stem cell
  • properties in head and neck squamous cell carcinoma. P Natl
  • Acad Sci USA 104: 973–978. Quintana E, Shackleton M, Foster HR, Fullen DR, Sabel MS, Johnson
  • TM, Morrison SJ (2010). Phenotypic heterogeneity among
  • tumorigenic melanoma cells from patients that is reversible
  • and not hierarchically organized. Cancer Cell 18: 510–523. Rapp UR, Ceteci F, Schreck R (2008). Oncogene-induced plasticity
  • and cancer stem cells. Cell Cycle 7: 45–51. Reya T, Clevers H (2005). Wnt signalling in stem cells and cancer.
  • Nature 434: 843–850. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001). Stem cells,
  • cancer, and cancer stem cells. Nature 414: 105–111. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M,
  • Peschle C, De Maria R (2007). Identification and expansion of
  • human colon-cancer-initiating cells. Nature 445: 111–115. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ,
  • Collins AT (2004). CD133, a novel marker for human prostatic
  • epithelial stem cells. J Cell Sci 117: 3539–3545. Routray S, Mohanty N (2014). Cancer stem cells accountability in
  • progression of head and neck squamous cell carcinoma: the
  • most recent trends. Mol Biol Int 2014: 375325. Salama R, Tang J, Gadgeel SM, Ahmad A, Sarkar FH (2012). Lung cancer stem cells: current progress and future perspectives. J
  • Stem Cell Res Ther S7: 007. Santisteban M, Reiman JM, Asiedu MK, Behrens MD, Nassar A,
  • Kalli KR, Haluska P, Ingle JN, Hartmann LC, Manjili MH et al.
  • (2009). Immune-induced epithelial to mesenchymal transition
  • in vivo generates breast cancer stem cells. Cancer Res 69: 2887– 2895. Shankar S, Nall D, Tang SN, Meeker D, Passarini J, Sharma J,
  • Srivastava RK (2011). Resveratrol inhibits pancreatic cancer
  • stem cell characteristics in human and KrasG12D transgenic
  • mice by inhibiting pluripotency maintaining factors and
  • epithelial-mesenchymal transition. PLoS One 6: e16530. Siemann DW, Keng PC (1986). Cell cycle specific toxicity of the
  • Hoechst 33342 stain in untreated or irradiated murine tumor
  • cells. Cancer Res 46: 3556–3559. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J,
  • Dirks PB (2003). Identification of a cancer stem cell in human
  • brain tumors. Cancer Res 63: 5821–5828. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T,
  • Henkelman RM, Cusimano MD, Dirks PB (2004). Identification
  • of human brain tumour initiating cells. Nature 432: 396–401. Shi Y, Fu X, Hua Y, Han Y, Lu Y, Wang J (2012). The side population
  • in human lung cancer cell line NCI-H460 is enriched in stem
  • like cancer cells. PLoS One 7: e33358. Song LL, Miele L (2007). Cancer stem cells--an old idea that’s new
  • again: implications for the diagnosis and treatment of breast
  • cancer. Expert Opin Biol Ther 7: 431–438. Su Y, Qiu Q, Zhang X, Jiang Z, Leng Q, Liu Z, Stass SA, Jiang F
  • (2010). Aldehyde dehydrogenase 1 A1-positive cell population
  • is enriched in tumor-initiating cells and associated with
  • progression of bladder cancer. Cancer Epidemiol Biomarkers
  • Prev 19: 327–337. Sullivan JP, Spinola M, Dodge M, Raso MG, Behrens C, Gao B, Schuster
  • K, Shao C, Larsen JE, Sullivan LA et al. (2010). Aldehyde
  • dehydrogenase activity selects for lung adenocarcinoma stem
  • cells dependent on notch signaling. Cancer Res 70: 9937–9948. Todaro M, Francipane MG, Medema JP, Stassi G (2010). Colon cancer
  • stem cells: promise of targeted therapy. Gastroenterology 138: 2151–2162. Ulukaya E, Frame FM, Cevatemre B, Pellacani D, Walker H, Mann
  • VM, Simms MS, Stower MJ, Yilmaz VT, Maitland NJ (2013).
  • Differential cytotoxic activity of a novel palladium-based
  • compound on prostate cell lines, primary prostate epithelial
  • cells and prostate stem cells. PLoS One 8: e64278. Vleminckx K, Vakaet L Jr, Mareel M, Fiers W, van Roy F (1991).
  • Genetic manipulation of E-cadherin expression by epithelial
  • tumor cells reveals an invasion suppressor role. Cell 66: 107– 119. Wang JY, Chang CC, Chiang CC, Chen WM, Hung SC (2012).
  • Silibinin suppresses the maintenance of colorectal cancer
  • stem-like cells by inhibiting PP2A/AKT/mTOR pathways. J
  • Cell Biochem 113: 1733–1743. Wang K, Chen X, Zhan Y, Jiang W, Liu X, Wang X, Wu B (2013).
  • Increased expression of ALDH1A1 protein is associated with
  • poor prognosis in clear cell renal cell carcinoma. Med Oncol 30: 574. Wang Y (2011). Effects of salinomycin on cancer stem cell in human
  • lung adenocarcinoma A549 cells. Med Chem 7: 106–111. Wang YC, Chao TK, Chang CC, Yo YT, Yu MH, Lai HC (2013).
  • Drug screening identifies niclosamide as an inhibitor of breast
  • cancer stem-like cells. PLoS One 8: e74538. Wang Z, Li Y, Banerjee S, Sarkar FH (2009). Emerging role of Notch
  • in stem cells and cancer. Cancer Lett 28: 8–12. Wang Z, Li Y, Kong D, Ahmad A, Banerjee S, Sarkar FH (2010).
  • Cross-talk between miRNA and Notch signaling pathways in
  • tumor development and progression. Cancer Lett 292: 141– 148. Wicha MS, Liu S, Dontu G (2006). Cancer stem cells: an old idea--a
  • paradigm shift. Cancer Res 66: 1883–1890. Yan X, Luo H, Zhou X, Zhu B, Wang Y, Bian X (2013). Identification
  • of CD90 as a marker for lung cancer stem cells in A549 and
  • H446 cell lines. Oncol Rep 230: 2733–2740. Ye J, Wu D, Wu P, Chen Z, Huang J (2014). The cancer stem
  • cell niche: cross talk between cancer stem cells and their
  • microenvironment. Tumour Biol 35: 3945–3951. Yi SY, Hao YB, Nan KJ, Fan TL (2013). Cancer stem cells niche: a
  • target for novel cancer therapeutics. Cancer Treat Rev 39: 290–296. Yu C, Yao Z, Dai J, Zhang H, Escara-Wilke J, Zhang X, Keller ET
  • (2011). ALDH activity indicates increased tumorigenic cells,
  • but not cancer stem cells, in prostate cancer cell lines. In Vivo 25: 69–76. 
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Progesterone receptor modulators in breast cancer

Ronald D. WIEHLE

Cytotoxic and apoptotic effects of ceranib-2 offering potential for a new antineoplastic agent in the treatment of cancer cells

Djanan VEJSELOVA, Hatice Mehtap KUTLU, Gökhan KUŞ, Selda KABADERE, Ruhi UYAR

Induction of apoptosis in the cervical cancer cell line HeLa by a novel metabolite extracted from the fungus Aspergillus japonicus Saito

Apoorva PRABHU, Prerana VENKAT, Bharath GAJARAJ, Varalakshmi KILINGAR NADUMANE

Multidrug resistance in chronic myeloid leukemia

Miray ÜNLÜ, Yağmur KİRAZ, Fatma Necmiye KACI, Mehmet Ali ÖZCAN, Yusuf BARAN

Evaluation of MUC1, CK20, and hTERT expression in peripheral blood of gastrointestinal cancer patients in search of diagnostic criteria

Sibel KÜÇÜKYILDIRIM, Beril ERDEM, Emel SAĞLAR, Zülfikar POLAT, Hatice MERGEN

Analysis of “Bimbam”, a novel glucocorticoid-induced BH3-only transcript in cell lines and children with acute lymphoblastic leukemia

Muhammad MANSHA, Muhammad WASIM, Ali Raza AWAN, Asma Abdul LATIF

Failure of immunological cells to eradicate tumor and cancer cells: an overview

Rohit SHARMA, Daizee TALUKDAR, Parth MALIK, Tapan Kumar MUKHERJEE

Current paradigms of cancer chemoprevention

Rajendra G. MEHTA

Identification of new genes required for the maintenance of chromosome integrity in Drosophila melanogaster

Francesca CEPRANI, Franco SPIRITO, Roberto PIERGENTILI

Autophagy and cancer

Hacer Ezgi KARAKAŞ, Devrim GÖZÜAÇIK