Properties of fiberboards produced from kermes oak Quercus coccifera L. and brutian pine Pinus brutia Ten. woods

In this study the utilization of kermes oak Quercus coccifera L. wood, which could be used as an industrial raw material for the production of fiberboard, was investigated. In the experimental design, boards were produced from mixtures of kermes oak and brutian pine Pinus brutia Ten. fibers in ratios of 0:100, 25:75, 50:50, 75:25, and 100:0. The chemical and thermal characteristics of the fibers used were determined, and the effects of these characteristics on the physical and mechanical properties of the produced fiberboards were revealed. The main chemical component analysis indicated that kermes oak fibers contained higher quantities of extractives, α-cellulose, and hemicelluloses and a lower quantity of lignin compared to the brutian pine fibers. Analyses of the main chemical components were supported by Fourier transform infrared spectroscopic analyses and gas chromatographic determination of monosaccharides. The pH determination showed that kermes oak fibers were more acidic than the brutian pine fibers. Thermogravimetric analysis indicated that kermes oak fibers had higher thermal stability than brutian pine fibers. An increase in kermes oak in the fiber mixture raised water absorption and thickness swelling TS but reduced the modulus of elasticity MOE , modulus of rupture MOR , and internal bond IB strength of the produced boards. The boards produced with 25% kermes oak fibers met the requirements of standard TS-EN 622-5 in terms of TS, MOE, MOR, and IB strength for load-bearing applications in dry conditions.

___

  • Akbulut T, Ayrılmış N, Koç E (2004). Influence of compression wood on physical and mechanical properties of medium density fiberboard. Drev Vysk 49 (3): 17-23.
  • Akbulut T, Hızıroğlu S, Ayrılmış N (2000). Surface absorption, surface roughness and formaldehyde emission of Turkish medium density fiberboard. Forest Products Journal 50 (6): 45-48.
  • Akgül M, Çöpür Y, Güler C, Tozluoğlu A, Büyüksarı, U (2007). Medium density fiberboard from Quercus robur. Journal of Applied Sciences 7 (7): 1085-1087.
  • Akgül M, Güler C, Üner B (2010). Opportunities in utilization of agricultural residues in bio-composite production: corn stalk (Zea mays indurata Sturt) and oak wood (Quercus robur L.) fiber in medium density fiberboard. African Journal of Biotechnology 9 (32): 5090-5098.
  • Akgül M, Korkut S, Çamlıbel O, Ayata Ü (2013). Some chemical properties of luffa and its suitability for medium density fiberboard (MDF) production. BioResources 8 (2): 1709-1717.
  • Akman Y (1995). Türkiye Orman Vejetasyonu. Ankara, Turkey: Ankara University (in Turkish).
  • Akyüz KC, Nemli G, Baharoğlu M, Zekovic E (2010). Effects of acidity of the particles and amount of hardener on the physical and mechanical properties of particleboard composite bonded with urea formaldehyde. International Journal of Adhesion and Adhesives 30 (3): 166-169. doi: 10.1016/j.ijadhadh.2009.12.006
  • Ashori A, Nourbakhsh A (2008). Effect of press cycle time and resin content on physical and mechanical properties of particleboard panels made from the underutilized low-quality raw materials. Industrial Crops and Products 28 (2): 225-230. doi: 10.1016/j. indcrop.2008.02.015
  • Ashori A, Nourbakhsh A (2010). Reinforced polypropylene composites: effects of chemical compositions and particle size. Bioresource Technology 101 (7): 2515-2519. doi: 10.1016/j. biortech.2009.11.022
  • ASTM D 1103 (1980). Standard Test Method for Alpha-Cellulose in Wood. West Conshohocken, PA, USA: ASTM International.
  • Ayrılmış N (2007). Effect of panel density on dimensional stability of medium and high density fiberboards. Journal of Materials Science 42 (20): 8551-8557.
  • Ayrılmış N, Büyüksarı U, Avcı E, Koç E (2009). Utilization of pine (Pinus pinea L.) cone in manufacture of wood based composite. Forest Ecology and Management 259 (1): 65-70. doi: 10.1016/j. foreco.2009.09.043
  • Ayrılmış N, Winandy JE (2009). Effects of post heat-treatment on surface characteristics and adhesive bonding performance of medium density fiberboard. Materials and Manufacturing Processes 24 (1): 594-599. doi: 10.1080/10426910902748032
  • Baharoğlu M, Nemli G, Sarı B, Birtürk T, Bardak S (2013). Effects of anatomical and chemical properties of wood on the quality of particleboard. Composites Part B: Engineering 52: 282-285. doi: 10.1016/j.compositesb.2013.04.009
  • Balaban M, Uçar G (2001). The correlation of wood acidity to its solubility by hot water and alkali. Holz als Roh- und Werkstoff 59 (1): 67-70. doi: 10.1007/s001070050476
  • Barboutis JA, Philippou JL (2007). Evergreen Mediterranean hardwoods as particleboard raw material. Building and Environment 42 (3): 1183-1187. doi: 10.1016/j.buildenv.2005.07.053
  • Büyüksarı U, Ayrılmış N, Avcı E, Koç E (2010). Evaluation of the physical, mechanical properties and formaldehyde emission of particleboard manufactured from waste stone pine (Pinus pinea L.) cones. Bioresource Technology 101 (1): 255-259. doi: 10.1016/j.biortech.2009.08.038
  • Cao B, Tschirner U, Ramaswamy S, Webb A (1997). A rapid modified gas chromatographic method for carbohydrate analysis of wood pulps. TAPPI Journal 80 (9): 193-197.
  • Chow P (1979). Phenol adhesive bonded medium-density fiberboard from Quercus rubra L. bark and sawdust. Wood and Fiber Science 11 (2): 92-98.
  • Çöpür Y, Güler C, Taşçıoğlu C, Tozluoğlu A (2008). Incorporation of hazelnut shell and husk in MDF production. Bioresource Technology 99 (15): 7402-7406.
  • Dill I, Salnikow J, Kraepelin G (1984). Hydroxyproline-rich protein material in wood and lignin of Fagus sylvatica. Applied and Environmental Microbiology 48 (6): 1259-1261.
  • Evrendilek F, Doygun H (2000). Assessing major ecosystem types and the challenge of sustainability in Turkey. Environmental Management 26 (5): 479-489. doi: 10.1007/s002670010106
  • Fengel D, Wegener G (1984). Wood Chemistry, Ultrastructure, Reactions. Berlin, Germany: Walter de Gruyter Verlag. doi: 10.1515/9783110839654
  • Gönültaş O (2008). Chemical characterization of cones, wood and needles of Pinus pinea. MSc, İstanbul University, İstanbul, Turkey.
  • Groom LH, Mott L, Shaler SM (1999). Relationship between fiber furnish properties and the structural performance of MDF. In: Proceedings of the 33rd International Particleboard/ Composite Materials Symposium. April 13–15, Washington State University, Pullman, WA, USA.
  • Güler G, Yaşar S (2018). Investigation of some chemical properties of kermes oak (Quercus coccifera L.) wood and its use in the particleboard production. Journal of Bartın Faculty of Forestry 20 (2): 184-193. doi: 10.24011/barofd.417910
  • Gwon JG, Lee SY, Chun SJ, Doh GH, Kim JH (2010). Effects of chemical treatments of hybrid fillers on the physical and thermal properties of wood plastic composites. Composites: Part A 41 (10): 1491-1497. doi: 10.1016/j.compositesa.2010.06.011
  • Johns WE, Niazi KA (1980). Effect of pH and buffering capacity of wood on the gelation time of urea-formaldehyde resin. Wood and Fiber Science 12 (4): 255-263.
  • Joseleau JP, Imai T, Kuroda K, Ruel K (2004). Detection in situ and characterization of lignin in the G-layer of tension wood fibres of Populus deltoids. Planta 219 (2): 338-345. doi: 10.1007/ s00425-004-1226-5
  • Jumhuri N, Hashim R, Sulaiman O, Nadhari WNAW, Salleh KM et al. (2014). Effect of treated particles on the properties of particleboard made from oil palm trunk. Materials & Design 64: 769-774. doi: 10.1016/j.matdes.2014.08.053
  • Kartal SN, Green F (2003). Decay and termite resistance of medium density fiberboard (MDF) made from different wood species. International Biodeterioration & Biodegradation 51 (1): 29-35.
  • Kaya B, Aladağ C (2009). Analyse of distribution areas in Turkey and ecologic characteristics of maquis and garriques communities. Selçuk University Journal of Institute of Social Sciences 22: 67- 80 (in Turkish with an abstract in English).
  • Kılıç A, Sarıusta SE, Hafızoğlu H (2010). Chemical structure of compression wood of Pinus sylvestris, P. nigra and P. brutia. Journal of Bartın Faculty of Forestry 12 (18): 33-39.
  • Lacroix A (1973a). Manufacture of hardboards with four species from Mediterranean countries. Gembloux, Belgium: Rapport d’Activite Station de Technologie Forestiere.
  • Lacroix A (1973b). Manufacture of particleboards with four species from Mediterranean countries. Gembloux, Belgium: Rapport d’Activite Station de Technologie Forestiere.
  • Li GY, Huang AM, Qin TF, Huang LH (2010). FTIR studies of Masson pine wood decayed by brown-rot fungi. Spectroscopy and Spectral Analysis 30 (8): 2133-2136.
  • Luna ML, Murace MA, Robledo GL, Saparrat MCN (2012). Characterization of Schinopsis haenkeana wood decayed by Phellinus chaquensis (Basidiomycota, Hymenochaetales). IAWA Journal 33 (1): 91-104. doi: 10.1163/22941932-90000082
  • Lykidis C, Grigoriou A, Barboutis I (2014). Utilisation of wood biomass residues from fruit tree branches, evergreen hardwood shrubs and Greek fir wood as raw materials for particleboard production.
  • Part A. Mechanical properties. Wood Material Science & Engineering 9 (4): 202-208. doi: 10.1080/17480272.2013.875589
  • Mahato K, Goswami S, Ambarkar A (2014). Morphology and mechanical properties of sisal fibre/vinyl ester composites. Fibers and Polymers 15 (6): 1310-1320. doi: 10.1007/s12221-014-1310- 9
  • Maloney TM (1977). Modern Particleboard and Dry-Process Fiberboard Manufacturing. San Francisco, CA, USA: Miller Freeman, Inc.
  • Nasser RA (2012). Physical and mechanical properties of three-layer particleboard manufactured from the tree pruning of seven wood species. World Applied Sciences Journal 19 (5): 741-753. doi: 10.5829/idosi.wasj.2012.19.05.2764
  • Nemli G, Yıldız S, Gezer ED (2008). The potential for using the needle litter of Scotch pine (Pinus sylvestris L.) as a raw material for particleboard manufacturing. Bioresource Technology 99 (14): 6054-6058. doi: 10.1016/j.biortech.2007.12.044
  • Nourbakhsh A, Farhani Baghlani F, Ashori A (2011). Nano-SiO2 filled rice husk/polypropylene composites: physico-mechanical properties. Industrial Crops and Products 33 (1): 183-187. doi: 10.1016/j.indcrop.2010.10.010
  • OGM (2016). Oduna Dayalı Orman Ürünlerinin Üretim ve Pazarlama Faaliyetleri. Ankara, Turkey: General Directorate of Forestry (in Turkish).
  • Özdemir H, Uçar MB (2016). Tannin which obtained from red pine tree bark evaluated as adhesive. Electronic Journal of Vocational Colleges 6 (4): 11-20.
  • Pirayesh H, Khanjanzadeh H, Salari A (2013). Effect of using walnut/almond shells on the physical, mechanical properties and formaldehyde emission of particleboard. Composites Part B: Engineering 45 (1): 858-863. doi: 10.1016/j. compositesb.2012.05.008
  • Pirayesh H, Khazaeian A, Tabarsa T (2012). The potential for using walnut (Juglans regia L.) shell as a raw material for wood-based particleboard manufacturing. Composites Part B: Engineering 43 (8): 3276-3280. doi: 10.1016/j.compositesb.2012.02.016
  • Shebani AN, Van Reenen AJ, Meincken M (2008). The effect of wood extractives on the thermal stability of different wood species. Thermochimica Acta 471 (1): 43-50. doi: 10.1016/j. tca.2008.02.020
  • Sinha E, Rout SK (2009). Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute fibre and its composite. Bulletin of Materials Science 32 (1): 65-76. doi: 10.1007/s12034-009-0010-3
  • Suchsland O, Woodson GE (1991). Fiberboard Manufacturing Practices in the United States. USDA Forest Service, Agriculture Handbook 640. Washington, DC, USA: USDA.
  • Tanobe VO, Flores-Sahagun TH, Amico SC, Muniz GI, Satyanarayana KG (2014). Sponge gourd (Luffa cylindrica) reinforced polyester composites: preparation and properties. Defence Science Journal 64 (3): 273-280. doi: 10.14429/dsj.64.7327
  • Taş HH, Sevinçli Y (2015). Properties of particleboard produced from red pine (Pinus brutia) chips and lavender stems. BioResources 10 (4): 7865-7876. doi: 10.15376/biores.10.4.7865-7876
  • TS-EN 310 (1999). Wood-Based Panels—Determination of Modulus of Elasticity in Bending and of Bending Strength. Ankara, Turkey: Turkish Standards Institution.
  • TS-EN 317 (1999). Particleboards and Fibreboards—Determination of Swelling in Thickness after Immersion in Water. Ankara, Turkey: Turkish Standards Institution.
  • TS-EN 319 (1999). Particleboards and Fibreboards—Determination of Tensile Strength Perpendicular to the Plane of the Board. Ankara, Turkey: Turkish Standards Institution.
  • TS-EN 622-5 (2011). Fibreboards—Specifications—Part 5: Requirements for Dry Process Boards (MDF). Ankara, Turkey: Turkish Standards Institution.
  • Tsoumis G, Kezos N, Fanariotou E, Voulgaridis E, Passialis C (1988). Characteristics of briarwood. Holzforschung 42 (2): 71-77. doi: 10.1515/hfsg.1988.42.2.71
  • Wise EL, Karl HL (1962). Cellulose and hemicellulose. In: Libby CE (editor). Pulp and Paper Science and Technology, Vol. 1. New York, USA: McGraw Hill, pp. 55-73.
  • Yaşar S (2014). Spectrophotometric determination of monosaccharide composition of wood (Pinus brutia Ten.) using artificial neural network modelling. Asian Journal of Chemistry 26 (18): 6084- 6088. doi: 10.14233/ajchem.2014.16721
  • Yaşar S, Güller B, Baydar H (2010). Studies on carbohydrate, lignin contents and some fiber properties of sesame (Sesamum indicum L.), cotton (Gossypium hirsutum L.) and poppy (Papaver somniferum L.) stalks. Journal of Süleyman Demirel University Faculty of Forestry 1 (1): 56-66.
  • Yaşar S, İçel B (2016). Alkali modification of cotton (Gossypium hirsutum L.) stalks and its effect on properties of produced particleboards. BioResources 11 (3): 7191-7204. doi: 10.15376/ biores.11.3.7191-7204
  • Yaşar S, Kılınç G (2018). Chemical characterization of kermes oak (Quercus coccifera L.) hemicelluloses esterified with palmitoyl, stearoyl and oleoyl chloride. Turkish Journal of Forestry 19 (1): 98-102. doi: 10.18182/tjf.390204