Lipophilic antioxidants in edible weeds from agricultural areas

Abstract: The present paper reports the contents of individual lipophilic antioxidants in fourteen species of edible common agricultural weeds, typical of agricultural areas such as fields and orchards. Young edible green aboveground parts of weeds were analyzed for their chlorophyll, carotenoid, and tocopherol qualitative profiles and contents. To the best of our knowledge, this is the first report on the complete lipophilic antioxidant composition of the edible weeds examined in this study. The results revealed that all examined leafy plant species are good sources of lipophilic antioxidants, the richest source being Urtica dioica (255.64 mg 100 g−1g−1g^{-1} fwt), followed by Cardamine hirsuta (159.85 mg 100 g−1g−1g^{-1} fwt), Cichorium intybus (150.87 mg 100 g−1g−1g^{-1} fwt), Aegopodium podagraria (146.07 mg 100 g−1g−1g^{-1} fwt), Taraxacum officinale (123.35 mg 100 g−1g−1g^{-1} fwt), and Capsella bursa-pastoris (117.59 mg 100 g−1g−1g^{-1} fwt), all with higher or similar contents compared to spinach (138.72 mg 100 g−1g−1g^{-1} fwt), proving the value of these weeds for nutrition. The shoot vegetable Humulus lupulus had the lowest lipophilic antioxidant content (22.98 mg 100 g−1g−1g^{-1} fwt), but this was still 3.8-fold higher than that of cultivated lettuce. Although all weeds examined in our study are valuable sources of health-promoting lipophilic antioxidants, comparison with cultivated spinach revealed that the general belief that all wild edible greens are richer in lipophilic antioxidants than cultivated leafy vegetables is not valid.

___

  • Barros L, Heleno SA, Carvalho AM, Ferreira CFR (2010). Lamiaceae often used in Portuguese folk medicine as source of powerful antioxidants: vitamins and phenolics. LWT-Food Sci Technol 43: 544-550.
  • Bharucha Z, Pretty J (2010). The roles and values of wild foods in agricultural systems. Phil Trans R Soc B 365: 2913-2926.
  • Boardman NK (1977). Comparative photosynthesis of sun and shade plants. Annu Rev Plant Physiol 28: 355-377.
  • Coruh I, Gormez A, Ercişli S, Bilen S (2007). Total phenolic, mineral elements, antioxidant, and antibacterial activities of some edible wild plants in Turkey. Asian J Chem 19: 5755-5762.
  • Coruh I, Gormez A, Ercişli S, Sengul M (2008). Tota l phenolic content, antioxidant, and antibacterial activity of Rumex crispus grown wild in Turkey. Pharm Biol 46: 634-638.
  • Demmig-Adams B, Adams WW (1994). Capacity for energy dissipation in the pigment bed in leaves with different xanthophyll cycle pools. Aust J Plant Physiol 21: 575-588.
  • Dias MG, Camões MFGFC, Oliveira L (2009). Carotenoids in traditional Portuguese fruits and vegetables. Food Chem 113: 808-815.
  • Dillard CJ, German JB (2000). Phytochemicals: nutraceuticals and human health. J Sci Food Agric 80: 1744-1756.
  • Dogan Y (2012). Traditionally used wild edible greens in the Aegean Region of Turkey. Acta Soc Bot Pol 81: 329-342.
  • Dogan Y, Baslar S, Ay G, Mert HH (2004). The use of wild edible plants in western and central Anatolia (Turkey). Econ Bot 58: 684-690.
  • Dogan Y, Ugulu I, Durkan N (2013). Wild edible plants sold in the local markets of Izmir, Turkey. Pak J Bot 45: 177-184.
  • Duma M, Zeipiņa S, Alsiņa I, Lepse L, Dubova L (2014). Leaf vegetables as source of phytochemicals. In: FOODBALT 2014: 9th Baltic Conference on Food Science and Technology ‘Food for Consumer Well-Being’ Conference Proceedings, pp. 262- 265.
  • Ercişli S, Coruh I, Gormez A, Sengul M (2008). Antioxidant and antibacterial activities of Portulaca oleracea L. grown wild in Turkey. Ital J Food Sci 20: 533-542.
  • Ertuğ F (2004). Wild edible plants of the Bodrum area (Muğla, Turkey). Turk J Bot 28: 161-174.
  • Fiedor J, Burda K (2014). Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6: 466-488.
  • García-Herrera P, Sánches-Mata MC, Cámara M, Tardío J, Olmedilla-Alonso B (2014). Carotenoid content of wild edible young shoots traditionally consumed in Spain ( Asparagus acutifolius L., Humulus lupulus L., Bryonia dioica Jacq. and Tamus communis L.). Erratum. J Sci Food Agric 94: 1914-1916.
  • Grlić L (1990). Enciklopedija samoniklog jestivog bilja. 2nd ed. Zagreb, Yugoslavia: ITRO August Cesarec (in Croatia). Hojnik M, Škrget M, Knez Ž (2007). Isolation of chlorophylls from stinging nettle ( Urtica dioica L.). Sep Purif Technol 57: 37-46.
  • Hsu CY, Chao PY, Hu SP, Yang CM (2013). The antioxidant and free radical scavenging activities of chlorophylls and phaeophytins. Food and Nutrition Sciences 4:1-8.
  • Kargıoğlu M, Cenkci S, Serteser A, Konuk M, Vural G (2010). Traditional uses of wild plants in the middle Aegean region of Turkey. Hum Ecol 38: 429-450 .
  • Kopsell DA, Whitlock KJ, Sams CE (2016). Nutritionally important pigments in purslane ( Portulaca oleracea ) differ between cultivars and in response to nitrogen. Hort Sci 51: 784-787. Kukrić ZZ, Topalić-Trivunović LN, Kukavica BM, Matoš SB, Pavičić SS, Boroja MM, Savić AV (2012). Characterization of antioxidant and antimicrobial activities of nettle leaves ( Urtica dioica L.). Acta Period Technol 43: 257-272.
  • Łuczaj Ł, Pieroni A, Tardío J, Pardo-de-Santayana M, Sõukand R, Svanberg I, Kalle R (2012). Wild food plant use in 21st century Europe: the disappearance of old traditions and the search for new cuisines involving wild edibles. Acta Soc Bot Pol 81: 359- 370.
  • Morales P, Carvalho AM, Sánches-Mata MC, Cámara M, Molina M, Ferreira ICFR (2012). Tocopherol composition and antioxidant activity of Spanish wild vegetables. Genet Resour Crop Evol 59: 851-863.
  • Morales P, Ferreira ICFR, Carvalho AM, Sánches-Mata MC, Cámara M, Fernández-Ruiz V, Pardo-de-Santayana M, Tardío J (2014). Mediterranean non-cultivated vegetables as dietary sources of compounds with antioxidant and biological activity. LWT- Food Sci Technol 55: 389-396.
  • Munné - Bosch S, Alegre L (2000). The significance of β-carotene, α-tocopherol and xanthophyll cycle in droughted Melissa officinalis plants. Aust J Plant Physiol 27: 139-146.
  • Ranfa A, Maurizi A, Romano B, Bodesmo M (2013). The importance of traditional uses and nutraceutical aspects of some edible wild plants in human nutrition: the case of Umbria (central Italy). Plant Biosyst 148: 297-306.
  • Samancioglu A, Sat IG, Yildirim E, Ercişli S, Juríková T , Mlček J (2016). Total phenolic and vitamin C content and antiradical activity evaluation of traditionally consumed wild edible vegetables from Turkey. Indian J Tradit Know 15: 208-213.
  • Sánches-Mata MC, Tardío J (2016). Mediterranean Wild Edible Plants. Ethnobotany and Food Composition Tables. New York, NY, USA: Springer Science+Business Media. Šircelj H, Batič F (2007) Evaluation of selected nutritional factors in Aposeris foetida (L.) Less. during the harvesting period. J Appl Bot Food Qual 62: 5573-5580.
  • Šircelj H, Mikulič-Petkovšek M, Batič F (2010). Antioxidants in spring leaves of Oxalis acetosella L. Food Chem 123: 351-357.
  • Vardavas CI, Majchrzak D, Wagner KH, Elmadfa I, Kafatos A (2006). The antioxidant and phylloquinone content of wildly grown greens in Crete. Food Chem 99: 813-821.
  • Yıldırım E, Dursun A, Turan M (2001). Determination of nutrition contents of the wild plants used as vegetables in upper Ç oruh Valley. Turk J Bot 25: 367-371.
  • Yoshida Y, Niki E, Noguchi N (2003). Comparative study on the action of tocopherols and tocotrienols as antioxidant: chemical and physical effects. Chem Phys Lipids 123: 63-75.
  • Zeipiņa S, Alsiņa I, Lepse L (2014). Stinging nettle – the source of biologically active compounds as sustainable daily diet supplement. In: Research for Rural Development 2014 – Annual 20th International Scientific Conference Proceedings, 21–23 May 2014, pp. 34-38.
  • Žnidarčič D, Ban D, Šircelj H (2011). Carotenoid and chlorophyll composition of commonly consumed leafy vegetables in Mediterranean countries. Food Chem 129: 1164-1168.
Turkish Journal of Agriculture and Forestry-Cover
  • ISSN: 1300-011X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK