Exogenous cysteine alleviates mercury stress by promoting antioxidant defence in maize (Zea mays L.) seedlings

Mercury (Hg) is one of the most important environmental pollutants that negatively affects plant growth and development. Cysteine (Cys) plays an important role in plant response to various environmental stress factors. In the present study, the alleviation of Hg stress through exogenous Cys treatment to maize seedlings was evaluated. For this purpose, a hydroponic experiment was set up to investigate the effect of HgCI2 (100 μM) and in combination with Cys (200 μM) on plant growth, total chlorophyll content, reactive oxygen species, antioxidant enzyme activities, and mRNA expression levels of some antioxidant genes in maize seedlings. The results showed that HgCI2 treatment significantly decreased both root and shoot growth and total chlorophyll content, also increased the malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide levels (O2.–) in maize seedlings. After treatment with 200 μM exogenous Cys combined with 100 μM HgCl2, root and shoot growth and total chlorophyll content increased and the concentration of MDA, H2O2, O2 .– in seedlings notably decreased and catalase (CAT), glutathione reductase (GR), superoxide dismutase (SOD), and peroxidase (POD) activities in seedlings increased significantly. In addition, HgCI2 treatment alone or combination with Cys markedly increased the root and leaf Hg content. The higher amounts of Hg accumulated in the roots of the seedlings. Furthermore, qRT-PCR results showed that the mRNA levels of CAT, GR, and SOD genes were up-regulated at HgCI2 + Cys treatment groups compared to the HgCI2 treatment alone. The results of the study indicated that exogenous Cys improved resistance to Hg-stress in maize seedlings by activating antioxidant defence system.

___

  • Agarwal S, 2004, BIOL PLANTARUM, V48, P555, DOI 10.1023/B:BIOP.0000047152.07878.e7
  • Aksakal O, 2017, PHOTOCH PHOTOBIO SCI, V16, P246, DOI 10.1039/c6pp00412a
  • Alayat A., 2014, Annual Research & Review in Biology, V4, P3835, DOI 10.9734/ARRB/2014/10641
  • Asada K, 2006, PLANT PHYSIOL, V141, P391, DOI 10.1104/pp.106.082040
  • BATES LS, 1973, PLANT SOIL, V39, P205, DOI 10.1007/BF00018060
  • Benavides María P., 2005, Braz. J. Plant Physiol., V17, P21, DOI 10.1590/S1677-04202005000100003
  • Boening DW, 2000, CHEMOSPHERE, V40, P1335, DOI 10.1016/S0045-6535(99)00283-0
  • Cargnelutti D, 2006, CHEMOSPHERE, V65, P999, DOI 10.1016/j.chemosphere.2006.03.037
  • Chen J, 2012, BIOMETALS, V25, P847, DOI 10.1007/s10534-012-9560-8
  • Cho UH, 2000, PLANT SCI, V156, P1, DOI 10.1016/S0168-9452(00)00227-2
  • Clemens S, 2006, BIOCHIMIE, V88, P1707, DOI 10.1016/j.biochi.2006.07.003
  • Cui WT, 2014, ECOTOX ENVIRON SAFE, V105, P103, DOI 10.1016/j.ecoenv.2014.04.009
  • Dickinson BC, 2011, NAT CHEM BIOL, V7, P504, DOI [10.1038/NCHEMBIO.607, 10.1038/nchembio.607]
  • DRAPER HH, 1990, METHOD ENZYMOL, V186, P421
  • ELSTNER EF, 1976, ANAL BIOCHEM, V70, P616, DOI 10.1016/0003-2697(76)90488-7
  • Erdal S, 2016, ENVIRON EXP BOT, V132, P92, DOI 10.1016/j.envexpbot.2016.08.014
  • FOYER CH, 1976, PLANTA, V133, P21, DOI 10.1007/BF00386001
  • Gill SS, 2010, PLANT PHYSIOL BIOCH, V48, P909, DOI 10.1016/j.plaphy.2010.08.016
  • Goldman LR, 2001, PEDIATRICS, V108, P197, DOI 10.1542/peds.108.1.197
  • Gong YP, 2001, BOT BULL ACAD SINICA, V42, P259
  • Gontia-Mishra I, 2016, J PLANT GROWTH REGUL, V35, P1000, DOI 10.1007/s00344-016-9598-x
  • Hodges DM, 1996, PHYSIOL PLANTARUM, V98, P685, DOI 10.1111/j.1399-3054.1996.tb06672.x
  • Hossain M, 2012, HANDBOOK OF ACCOUNTING AND DEVELOPMENT, P120
  • Hsu YT, 2004, PLANT GROWTH REGUL, V42, P227, DOI 10.1023/B:GROW.0000026514.98385.5c
  • Hylander LD, 2006, SCI TOTAL ENVIRON, V368, P352, DOI 10.1016/j.scitotenv.2005.11.029
  • Jarup L, 2003, BRIT MED BULL, V68, P167, DOI 10.1093/bmb/ldg032
  • John R, 2008, PLANT SOIL ENVIRON, V54, P262, DOI 10.17221/2787-PSE
  • Klaassen CD, 1999, ANNU REV PHARMACOL, V39, P267, DOI 10.1146/annurev.pharmtox.39.1.267
  • Lamhamdi M, 2013, SAUDI J BIOL SCI, V20, P29, DOI 10.1016/j.sjbs.2012.09.001
  • Laspina NV, 2005, PLANT SCI, V169, P323, DOI 10.1016/j.plantsci.2005.02.007
  • Lopes MS, 2013, METALLOMICS, V5, P1305, DOI 10.1039/c3mt00084b
  • Mahbub KR, 2017, ECOL INDIC, V74, P451, DOI 10.1016/j.ecolind.2016.12.004
  • Mantri N, 2012, ABIOTIC STRESS RESPONSES IN PLANTS: METABOLISM, PRODUCTIVITY AND SUSTAINABILITY, P1, DOI 10.1007/978-1-4614-0634-1_1
  • Meng DK, 2011, J HAZARD MATER, V186, P1823, DOI 10.1016/j.jhazmat.2010.12.062
  • Meng M, 2014, ENVIRON POLLUT, V184, P179, DOI 10.1016/j.envpol.2013.08.030
  • Miller G, 2010, PLANT CELL ENVIRON, V33, P453, DOI 10.1111/j.1365-3040.2009.02041.x
  • Mocquot B, 1996, PLANT SOIL, V182, P287, DOI 10.1007/BF00029060
  • Moller IM, 2007, ANNU REV PLANT BIOL, V58, P459, DOI 10.1146/annurev.arplant.58.032806.103946
  • Nagajyoti PC, 2010, ENVIRON CHEM LETT, V8, P199, DOI 10.1007/s10311-010-0297-8
  • NAKANO Y, 1981, PLANT CELL PHYSIOL, V22, P867
  • OHKAWA H, 1979, ANAL BIOCHEM, V95, P351, DOI 10.1016/0003-2697(79)90738-3
  • Patra M, 2000, BOT REV, V66, P379, DOI 10.1007/BF02868923
  • Peralta JR, 2001, B ENVIRON CONTAM TOX, V66, P727
  • Rejeb Ines Ben, 2014, Plants (Basel), V3, P458, DOI 10.3390/plants3040458
  • Ronchetti R, 2006, ACTA PAEDIATR, V95, P36, DOI 10.1080/08035250600886157
  • Safari F, 2019, ECOTOX ENVIRON SAFE, V183, DOI 10.1016/j.ecoenv.2019.109542
  • Sahu Gopal Krishna, 2012, Physiology and Molecular Biology of Plants, V18, P21, DOI 10.1007/s12298-011-0090-6
  • Sandalio LM, 2001, J EXP BOT, V52, P2115, DOI 10.1093/jexbot/52.364.2115
  • Sharma Pallavi, 2005, Braz. J. Plant Physiol., V17, P35, DOI 10.1590/S1677-04202005000100004
  • Sharma SS, 2006, J EXP BOT, V57, P711, DOI 10.1093/jxb/erj073
  • Singh S, 2006, CHEMOSPHERE, V62, P233, DOI 10.1016/j.chemosphere.2005.05.017
  • SMITH PK, 1985, ANAL BIOCHEM, V150, P76, DOI 10.1016/0003-2697(85)90442-7
  • Stein ED, 1996, CRIT REV ENV SCI TEC, V26, P1, DOI 10.1080/10643380490265117
  • Szabados L, 2010, TRENDS PLANT SCI, V15, P89, DOI 10.1016/j.tplants.2009.11.009
  • Tchounwou Paul B, 2012, Exp Suppl, V101, P133, DOI 10.1007/978-3-7643-8340-4_6
  • Teixeira WF, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00327
  • Tsuji N, 2002, BIOCHEM BIOPH RES CO, V293, P653, DOI 10.1016/S0006-291X(02)00265-6
  • Velikova V, 2000, PLANT SCI, V151, P59, DOI 10.1016/S0168-9452(99)00197-1
  • Witham FH, 1971, EXPT PLANT PHYSL, P55 .
  • Wu TM, 2009, AQUAT TOXICOL, V94, P275, DOI 10.1016/j.aquatox.2009.07.010
  • Yadav SK, 2010, S AFR J BOT, V76, P167, DOI 10.1016/j.sajb.2009.10.007
  • Ye Y, 2003, ENVIRON EXP BOT, V49, P209, DOI 10.1016/S0098-8472(02)00071-0
  • Yordanova RY, 2004, ENVIRON EXP BOT, V51, P93, DOI 10.1016/S0098-8472(03)00063-7
  • Zengin FK, 2005, ACTA BIOL CRACOV BOT, V47, P157
  • Zhang FQ, 2007, CHEMOSPHERE, V67, P44, DOI 10.1016/j.chemosphere.2006.10.007
  • Zhang TT, 2017, ECOTOX ENVIRON SAFE, V143, P46, DOI 10.1016/j.ecoenv.2017.04.058
  • Zhou ZS, 2008, CHEMOSPHERE, V70, P1500, DOI 10.1016/j.chemosphere.2007.08.028
  • Zhou ZS, 2009, ENVIRON EXP BOT, V65, P27, DOI 10.1016/j.envexpbot.2008.06.001