Environmental and soil variables affecting the structure and floristic woody composition of oak forests of northeastern Mexico

The objective of this study was to investigate the influence of environmental and soil factors on the structure and floristic woody composition of oak forests. Oak forests of the Sierra de Zapalinamé in northeastern Mexico (25°N) are distributed in canyons and northwest slopes with higher humidity, surrounded by montane chaparral. We carried out a vegetation inventory across an altitudinal gradient. All trees with diameter at breast height of =>3 cm were identified and measured. In addition, the cover of understory species was measured in each plot. Using multivariate techniques, we detected two oak forest associations: Quercus greggii - Q. mexicana forest and Q. saltillensis - Q. laeta forest. The forests studied are rich in woody species, including 19 tree and 50 shrub species. The number of tree species decreased at lower elevations, but the shrub species increased. Environmental variables evaluated included elevation, precipitation, temperature, soil pH and electrical conductivity, and soil percentage of sand, clay, and silt. All these variables revealed significant differences for the two oak forest associations. With respect to biotic parameters, significant differences (P < 0.05) in basal area were observed. Multivariate analysis revealed the species distribution along a moisture gradient across elevation. The ecological study of oak forests provides the basis for future research on forest dynamics and can guide conservation efforts to maintain species diversity and endemism in the mountain studied.

___

  • Aguado-Santacruz, GA, García-Moya E, Velasco-González C, Flores- Flores JL (1996). Importancia de los elementos climáticos en la variación florística temporal de pastizales semidesérticos. Acta Bot Mex 35: 65-81 (in Spanish).
  • Aguilar-Romero RF, García-Oliva F, Pineda-García F, Torres I, Peña- Vega E, Ghilardi A, Oyama K (2016). Patterns of distribution of nine Quercus species along an environmental gradient in a fragmented landscape in central Mexico. Bot Sci 94: 471-482.
  • Arévalo JR, Cortés-Selva F, Chiarucci A (2012). Ecological determinants of species composition in the forest vegetation of Tuscany, Italy. Plant Ecol Evol 145: 323-331.
  • Austin MP, Pausas JG, Nicholls AO (1996). Patterns of tree species richness in relation to environment in southeastern New South Wales, Australia. Aust J Ecol 21: 154-164.
  • Axmanová I, Zelený D, Li CF, Chytrý M (2011). Environmental factors influencing herb layer productivity in Central European oak forests: insights from soil and biomass analyses and a phytometer experiment. Plant Soil 342: 183-194.
  • Behera MD, Kushwaha SPS (2007). An analysis of altitudinal behavior of tree species in Subansiri district, eastern Himalaya. Biodivers Conserv 16: 1851-1865.
  • Chytrý M, Danihelka J, Ermakov N, Hájek M, Hájková P, Koči M, Kubešová S, Lustyk P, Otýpková Z, Papov D et al. (2007). Plant species richness in continental southern Siberia: effects of pH and climate in the context of the species pool hypothesis. Global Ecol Biogeogr 16: 668-678.
  • Díaz-Maroto IJ, Fernández-Parajes J, Vila-Lameiro P (2007). Chemical properties and edaphic nutrients content in natural stands of Quercus pyrenaica Willd. in Galicia, Spain. Eurasian Soil Sci 40: 522-531.
  • Encina-Domínguez JA, Estrada-Castillón E, Villarreal-Quintanilla JA, Villaseñor JL, Cantú-Ayala CM, Arévalo JR (2016). Floristic richness of the Sierra de Zapalinamé, Coahuila, Mexico. Phytotaxa 283: 1-42.
  • Encina-Domínguez JA, Mata-Rocha E, Meave JA, Zárate-Lupercio A (2011). Community structure and floristic composition of Quercus fusiformis and Carya illinoinensis forests of the Northeastern Coastal Plain, Coahuila, Mexico. Rev Mex Biodivers 82: 607-622.
  • Encina-Domínguez JA, Valdés-Reyna J (2013). Vegetación de la Sierra de Zapalinamé. In: Arizpe-Narro A, editor. Sierra Zapalinamé. Guía para conocer y valorar el área protegida de la Sierra de Zapalinamé. Saltillo, Mexico: Elementocero ediciones, pp. 57-72 (in Spanish).
  • Encina-Domínguez JA, Zárate-Lupercio A, Estrada-Castillón E, Valdés-Reyna J, Villarreal-Quintanilla JA (2009). Composición y aspectos estructurales de los bosques de encino de la Sierra de Zapalinamé, Coahuila, México. Acta Bot Mex 86: 71-108 (in Spanish).
  • Encina-Domínguez JA, Zárate-Lupercio A, Valdés-Reyna J, Villarreal-Quintanilla JA (2007). Caracterización ecológica y diversidad de los bosques de encino de la sierra de Zapalinamé, Coahuila, México. B Soc Bot Mex 81: 51-63 (in Spanish).
  • Estrada-Castillón E, Arévalo JR, Villarreal-Quintanilla JÁ, Salinas- Rodríguez MM, Encina-Domínguez JA, González-Rodríguez H, Cantú Ayala CM (2015). Classification and ordination of main plant communities along an altitudinal gradient in the arid and temperate climates of northeastern Mexico. Sci Nat 102: 59-70.
  • Fernandes-Abreu M, Rodrigues-Pinto JR, Maracahipes L, Gomes L, Almeida de Oliveira E, Schwantes-Marimon B, Marimon- Junior BH, de Farias J, Lenza E (2012). Influence of edaphic variables on the floristic composition and structure of the tree- shrub vegetation in typical and rocky outcrop cerrado areas in Serra Negra, Goiás State, Brazil. Braz J Bot 35: 259-272.
  • Fernández-Linares LC, Rojas-Avelizapa NG, Roldán-Carrillo TG, Ramírez-Islas ME, Zegarra-Martínez HG, Uribe-Hernández R, Reyes-Ávila, RJ, Flores-Hernández D, Arce-Ortega JM (2006). Manual de técnicas de análisis de suelos aplicadas a la remediación de sitios contaminados. Mexico City, Mexico: Secretaría de Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología (in Spanish).
  • Fischer HS, Michler B, Ewald J (2014). Environmental, spatial and structural components in the composition of mountain forest in the Bavarian Alps. Folia Geobot 49: 361-384.
  • González-Espinosa M, Ramírez-Marcial N, Galindo-Jaimes L (2006). Secondary succession in montane pine-oak forests of Chiapas, Mexico. In: Kappelle M, editor. Ecology and Conservation of Neotropical Montane Oak Forest. Ecological Studies Vol. 185. Berlin, Germany: Springer, pp. 209-221.
  • Guerrero-Campo J, Alberto F, Hodgson J, García-Ruiz JM, Montserrat-Martí G (1999). Plant community patterns in a gypsum area of NE Spain. I. Interactions with topographic factors and soil erosion. J Arid Environ 41: 401-410.
  • Havlin JL, Tisdale SL, Nelson WL, Beaton JD (2014). Soil Fertility and Fertilizers: An Introduction to Nutrient Management. 8th ed. Upper Saddle River, NJ, USA: Prentice Hall.
  • Henrickson J, Johnston MC (1986). Vegetation and community types of the Chihuahuan Desert. In: Barlow JC, Powell AM, Timmermann BN, editors. Second Symposium on Resources of the Chihuahuan Desert Region, United States and Mexico. Alpine, TX, USA: Chihuahuan Desert Research Institute, pp. 20-39.
  • Hill MO, Gauch HJ Jr (1980). Detrended correspondence analysis, an improved ordination technique. Vegetatio 42: 47-58.
  • Hill MO, Šmilauer P (2005). TWINSPAN for Windows Version 2.3. Huntingdon, UK: Centre for Ecology and Hydrology & University of South Boehmia.
  • Huerta-Martínez FM, Vázquez-García JA, García-Moya E, López- Mata L, Vaquera-Huerta H (2004). Vegetation ordination at the southern Chihuahuan Desert (San Luis Potosi, Mexico). Plant Ecol 174: 79-87.
  • INEGI (2013). Continúo de modelos digitales de elevación LIDAR de terreno con resolución de 15 m. Mexico City, Mexico: Instituto Nacional de Estadística, Geografía e Informática (in Spanish).
  • Körner C (2007). The use of ‘altitude’ in ecological research. Trends Ecol Evol 22: 569-574.
  • Magurran AE (2004). Measuring Biological Diversity. Oxford, UK: Blackwell Publishing.
  • Meave JA, Rincón A, Romero-Romero MA (2006). Oak forests of the hyper-humid region of La Chinantla, northern Oaxaca range Mexico. In: Kappelle M, editor. Ecology and Conservation of Neotropical Montane Oak Forest. Ecological Studies Vol. 185. Berlin, Germany: Springer, pp. 113-125.
  • Mengel K, Kirkby EA (2001). Principles of Plant Nutrition. 5th ed. Dordrecht, the Netherlands: Kluwer Academic.
  • Merry RH (2009). Acidity and alkalinity of soils. In: Sabljic A, editor. Environmental and Ecological Chemistry, Vol. 2; Encyclopedia of Life Support Systems. Paris, France: UNESCO-EOLSS Publishers, pp. 115-131.
  • Muller-Using B (1994). Contribuciones al conocimiento de los bosques de encino y pino-encino en el Noreste de México. Reporte Científico No. 14. Linares, Mexico: Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León (in Spanish).
  • Nelson DW, Sommers LE (1982). Total carbon, organic carbon and organic matter. In: Page AL, Miller RH, Keeney DR, editors. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. 2nd ed. Madison, WI, USA, pp. 539-579.
  • Nixon KC (1993). The genus Quercus in Mexico. In: Ramamoorthy TP, Bye R, Lot A, Fa J, editors. Biological Diversity of Mexico: Origins and Distribution. Oxford, UK: Oxford University Press, pp. 447-458.
  • Olvera-Vargas M, Moreno-Gómez S, Figueroa B (1996). Sitios permanentes para la investigación silvícola. Manual para su establecimiento. Libros del Instituto Manantlán. Universidad de Guadalajara (in Spanish).
  • Olvera-Vargas M, Figueroa-Rangel BL, Vázquez-López JM (2010). Is there environmental differentiation in the Quercus dominated forests of west-central Mexico? Plant Ecol 211: 321-335.
  • Periódico Oficial (1996). Decreto del área natural protegida, con carácter de Zona Sujeta a Conservación Ecológica, un área de la serranía conocida como Zapalinamé. Periódico Oficial del Estado, Tomo CIII, No. 83, pp. 69-75 (in Spanish).
  • Portes VL (2001). Evaluación del cambio de uso de suelo y del paisaje regional en la sierra Zapalinamé. Soc Rur Prod Medio Amb 2: 41-51 (in Spanish).
  • Rahayu SS, Rodzay AW, Kamariah AS, Burslem DFRP (2012). Habitat associations and community structure of dipterocarps in response to environment and soil conditions in Brunei Darussalam, northwest Borneo. Biotropica 44: 595-605.
  • Ramírez-Marcial N, González-Espinosa M, Williams-Linera G (2001). Anthropogenic disturbance and tree diversity in montane rain forest in Chiapas, Mexico. Forest Ecol Manag 154: 311-326.
  • Rzedowski J (2006). Vegetación de México. 1era. Edición digital. Mexico City, Mexico: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (in Spanish).
  • Seibert J, Stendahl J, Sørensen R (2007). Topographical influences on soil properties in boreal forests. Geoderma 141: 139-148.
  • SEMARNAT (2000). Norma Oficial Mexicana NOM-021- SEMARNAT-2000. Establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. Diario Oficial de la Federación. Mexico City, Mexico: Secretaría de Medio Ambiente y Recursos Naturales (in Spanish).
  • SPSS (1997). SPSS Base 7.5 Applications. Guide. Chicago, IL, USA: SPSS Inc.
  • ter Braak CJF (1987). The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69: 69-77.
  • ter Braak CJF, Šmilauer P (2002). CANOCO reference manual and CanoDraw for windows user’s guide: software for canonical community ordination (version 4.5). Ithaca, NY, USA: Microcomputer Power.
  • Toledo-Garibaldi M, Williams-Linera G (2014). Tree diversity patterns in successive vegetation types along an elevation gradient in the Mountains of Eastern Mexico. Ecol Res 29: 1097-1104.
  • Trewin B (2007). Función de las normales climatológicas en un clima cambiante. Ginebra, Colombia: Organización Meteorológica Mundial (in Spanish).
  • UAAAN (1998). Programa de manejo de la zona sujeta a conservación ecológica “Sierra de Zapalinamé”. Secretaría de Desarrollo Social, Gobierno del estado de Coahuila. Saltillo, Coahuila: Universidad Autónoma Agraria Antonio Narro (in Spanish).
  • Vázquez GJA, Givnish TJ (1998). Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlán. J Ecol 86: 999-1020.
  • Villaseñor JL (2016). Checklist of the native vascular plants of Mexico. Rev Mex Biodivers 87: 559-902.
  • Zar JH (1984). Biostatistical Analysis. Englewood Cliffs, NJ. USA: Prentice Hall.