Effect of the height of the stem on the polysaccharide composition of Pinus brutia Ten wood and kraft-pulp

The first goal of this study was to determine the polysaccharide composition of Pinus brutia wood and how this composition changes during kraft pulping. The second goal was to determine the effect of the stem height on chemical composition. The content of hemicelluloses was about 280 mg/g at a height of 1.3 m, whereas the content was about 300 mg/g at the top of the stem 4.3 m . The main sugars in the wood of P. brutia were mannose 102 mg/g dw , xylose 69 mg/g dw , and glucose 44 mg/g dw . During kraft pulping, 52% of the total hemicelluloses were degraded. Glucose and xylose were more stable than mannose. The total amounts of cellulose in the wood and in the kraft pulp of P. brutia were determined to be 330 mg/g and 661 mg/g, respectively, at 1.3 m.

___

  • Baharoğlu M, Nemli G, Sarı B, Birtürk T, Bardak S (2013). Effect of anatomical and chemical properties of wood on the quality of particleboard. Composites Part-B 52: 282-285. doi: 10.1016/j. compositesb.2013.04.009
  • Bai L, Hu H, Xu Y (2012). Influence of configuration and molecular weight of hemicelluloses on their paper-strengthening effects. Carbohydrate Polymer 8: 1258-1263. doi: 10.1016/j. carbpol.2012.02.002
  • Berkel A (1970). Ağaç Malzeme Teknolojisi. İstanbul, Turkey: İstanbul Üniversitesi Orman Fakültesi Yayınları (in Turkish).
  • Camphell GA, Kim WJ, Koch P (1990). Chemical variation in Lodgepole pine sapwood/hearthwood, stem height and variety. Wood and Fiber Science 22 (1): 22-30.
  • Carillo I, Vidal C, Elissetche JP, Mendonca RT (2018). Comparative study of cellulosic components isolated from different Eucalyptus species. Cellulose 25 (2): 1011-1029. doi: 10.1007/ s10570-018-1653-2
  • Caron A, Altener CM, Gardiner B, Jarvis MC (2013). Distribution of extractives in Sitka spruce grown in northern UK. European Journal of Wood and Wood Products 71 (6): 697-704. doi: 10.1007/s00107-013-0728-x
  • Cote WA, Day AC, Simson BW (1966). Studies on larch arabinogalactan I. The distribution of arabinogalactan in larch wood. Holzforschung 20: 178-192.
  • Ebringerová A, Hromádková Z, Heinze T (2005). Hemicellulose. In: Heinze T, editor.
  • Polysaccharides I: Structure, Characterization and Use. Advances in Polymer Science 186. Berlin/Heidelberg: Springer-Verlag, pp. 1-67.
  • Fengel D, Wegener G (2003). Wood Chemistry, Ultrastructure, Reaction. Remagen, Germany: Kessel Verlag.
  • Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S et al. (2010). Hemicelluloses for ethanol fuel: A review. Bioresource Technology 101: 4775-4800. doi: 10.1016/j.biortech.2010.01.088
  • Göksel E, (1981). Kızılçam lif morfolojisi ve odunundan sülfat selülozu elde etme olanakları üzerine araştırmalar. Journal of Faculty of Forestry, İstanbul University 31: 203-212 (in Turkish).
  • Hafizoğlu H, Usta M (2005). Chemical composition of coniferous wood species occurring in Turkey. Holz als Roh- und Werkstoff 63: 83-85. doi: 10.1007/s00107-004-0539-1
  • Hamaguchi M, Kautto J, Vakkilainen E (2013). Effects of hemicellulose extraction on the kraft pulp mill operation and energy use: Review and case study with lignin removal. Chemical Engineering Research and Design 91: 1284-1291. doi: 10.10167j. cherd.2013.02.006
  • Johansson S, Carlqvist K, Kataria R, Ulvcrona T, Bergsten U et al. (2015). Implications of differences in macromolecular composition of stem fractions for processing of Scots pine. Wood Science and Technology 49 (5): 1037-1054. doi: 10.1007/s00226-015-0739-3
  • Jun A, Tschirner UW, Tauer Z (2012). Hemicellulose extraction from aspen chips prior to kraft pulping utilization kraft white liquor. Biomass and Bioenergy 37: 229-236. doi: 10.1016/j. biombioe.2011.12.008
  • Karaaslan MA, Tshabalala MA, Yelle DJ, Buschle-Diller G (2011). Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers. Carbohydrate Polymer 86: 192-201. doi: 10.1016/jcarbpol.2011.04.030
  • Kapu NS, Trajano HL (2014). Review of hemicellulose hydrolysis in softwoods and bamboo. Biofuels Bioproducts & Biorefining 8: 857-870. doi: 10.1002/bbb
  • Kilic A, Sariusta S, Hafizoğlu H (2010). Chemical structure of compression wood of Pinus sylvestris, P. nigra, P. brutia. Journal of Bartin Faculty of Forestry 12 (18): 33-39.
  • Kilic A, Hafizoğlu H, Tümen I, Dönmez IE, Sivrikaya H et al. (2010). Polysaccharides in cones of eleven coniferous species. Wood Science and Technology 44: 523-529. doi: 10.1007/s00226-010- 0334-6
  • Krutul D, Zielenkiewicz T, Radomski A, Zawadzki M, Antczak A et al. (2014a). Influence of urban environment originated heavy metal pollution on the extractives and mineral substances content in bark and wood of oak (Quercus robur L.). Wood Research 59 (1): 177-190.
  • Krutul D, Zielenkiewicz T, Radomski A, Zawadzki M, Antczak A et al. (2014b). Impact of the environmental pollution originated from sulfur mining on the chemical composition of wood and bark of birch. Forestry and Wood Technology 88: 117-125.
  • Kostiainen K, Kaakinen S, Saranpää S, Sigurdsson BD, Linders S et al. (2004). Effects of elevated CO2 on stem wood properties mature Norway spruce grown at different soil nutrient availability. Global Change Biology 10: 1526-1538. doi: 10.1111/j.1365.24 86.2004.008.21.x
  • Li Z, Qin M, Xu C, Chen X (2013). Hot water extraction of hemicelluloses from aspen wood chips of different sizes. Bioresources 8 (4): 5650-5700.
  • Li Z, Hu H, Li H, Huang L, Chen L et al. (2017). Kinetics and mechanism of hemicelluloses removal from cellulosic fibers during the cold caustic extraction process. Bioresource Technology 232: 61-66. doi: 10.1016/j.biortech.2017.03.026
  • Liu J, Willför S, Xu C (2015). A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioactive Carbohydrate and Dietary Fibre 5: 31-61. doi: org/10.1016/j.bcdf.2014.12.001
  • Merev N (2003). Odun Anatomisi. Trabzon, Turkey: Karadeniz Teknik Üniversitesi Yayınları (in Turkish).
  • Mikonen KS, Tenkanen M (2012). Sustainable food-packaging materials based on future biorefinery products: Xylans and mannans. Trends in Food Science & Technology 28: 90-102. doi: 10.1016/j.tifs.2012.06.012
  • Muhcu S, Nemli G, Ayrılmış N, Bardak S, Haharoğlu M et al. (2015). Effect of log position in European Larch tree on the technological properties of particleboard. Scandinavian Journal of Forest Research 30: 357-362. doi: 10.1080/02827581.2014.986522
  • Neverova NA, Levchuk AA, Ostroukhova LA, Medvedeva EN, Onuchina NA et al. (2013). Distribution of extractive substances in wood of the Serbian Larch. Russian Journal of Bioorganic Chemistry 39: 712-719. doi: 10.1134/S1068162013070708
  • Öktem E (1987). Kızılçam. Turkish Forestry Research Institute Publication Handbook Series No: 2 Ankara (in Turkish).
  • Öktem Ö, Sözen R (1995). Effects of resin production on the physical and mechanical properties of Calabrian cluster pine wood. Central Anatolia Turkish Forestry Research Institute. Technical Bulletin 3: 256 (in Turkish).
  • Pekgözlü Kilic A, Gülsoy SK, Aycicek Y (2017). Effect of stem height on the fiber morphology and chemical composition of European black pine. Journal of Bartin Faculty of Forestry 19: 74-81 (in Turkish with an abstract in English). doi: 10.24011/ barofd.342069
  • Persson T, Jönsson AS (2017). Characterization of hemicelluloses in process streams in thermomechanical and chemithermomechanical pulp mills. Journal of Wood Chemistry and Technology 37: 184-190. doi: 10.1080/0277381.2016.1271433
  • Rowell RM (2005). Handbook of Wood Chemistry and Wood Composites. Boca Raton, FL, USA: CRC Press.
  • Salazar JAH, Hernandez GC, Hidalgo FA, Aburto J (2015). Main wood chemical constituents of Ceiba pentandra, Hevea brasiliensis and Ochroma pyramidale. Madera y Bosques 21 (2): 131-146.
  • Sjöström E (1993). Wood Chemistry: Fundamentals and Applications. San Diego, CA, USA: Academic Press.
  • Sundberg A, Sundberg K, Lilland C, Holmbom B (1996). Determination of hemicelluloses and pectins in wood and pulp fibers by acid methanolysis and gas chromatography. Nordic Pulp and Paper Research Journal 11: 216-219.
  • Sundberg A, Pranovich AV, Holmbom B (2003). Chemical characterization of various types of mechanical pulp fines. Journal of Pulp and Paper Science 29 (5): 173-178.
  • Tank T, Göksel E, Cengiz M, Gürboy B (1990). Hızlı gelişen bazı iğne yapraklı ağaç türlerinin lif ve kağıt teknolojisi yönünden incelenmesi. İstanbul Üniversitesi Orman Fakültesi Dergisi A 40 (1): 40-50 (in Turkish). TAPPI (1999). TAPPI T 207. Water solubility of wood and pulp. Atlanta, GA, USA: TAPPI
  • TAPPI (2002a). TAPPI T 275. Screening of pulp. Atlanta, GA, USA: TAPPI
  • TAPPI (2002b). TAPPI T 257. Sampling and preparing of wood for analysis. Atlanta, GA, USA: TAPPI
  • TAPPI (2002c). TAPPI T 222. Acid insoluble lignin in wood and pulp. Atlanta, GA, USA: TAPPI
  • TAPPI (2002d). TAPPI T 211. Ash in wood, pulp, paper and paperboard: combustion at 525 °C. Atlanta, GA, USA: TAPPI
  • Teleman A, Ek M, Gellerstedt G, Henkriksson G (2009). Wood Chemistry and Wood Biotechnology. Berlin: De Gruyter.
  • Vila C, Romero J, Francisco JL, Garrote G, Parajo JC (2011). Extracting value from Eucalyptus wood before kraft pulping: Effects of hemicellulose solubilization on pulp properties. Bioresource Technology 102: 5251-5254. doi: 10.1016/jbiortech.2011.02.002
  • Willför S, Sjöholm R, Laine C, Roslund M, Hemming J et al. (2003). Characterization of water-soluble galactoglucomannas from Norway spruce wood and thermomechanical pulp. Carbohydrate Polymers 52: 175-187. doi: 10.1016/S0144- 8617(02)00288-6
  • Willför S, Sundberg A, Hemming J (2005). Polysaccharides in some industrially important softwood species. Wood Science and Technology 39: 245-258. doi: 10.1007/s00226-004-0280-2
  • Wise LE, John EC (1952). Wood Chemistry. New York, NY, USA: Reinhold Publication Co.
  • Yoon SH, van Heiningen A (2008). Kraft pulping and paper making properties of hot-water pre-extracted loblolly pine in an integrated forest products biorefinery. TAPPI Journal: 22-27.