Doğu Karadeniz Bölgesi, Artvin Yöresi, Yapraklı ve İğne Yapraklı Ormanlarının Ölü Örtü Kütle Azalma Oranları: Ölü Örtünün Kimyasal Yapısının, Mikroiklim ve Toprak Özelliklerinin Ayrışma ile Olan İlişkisi

Ölü örtü ayrışması hem biyotik hem de biyotik olmayan faktörler tarafından kontrol edilmektedir. Ölü örtü ayrışması genel olarak, ölü örtünün kimyasal yapısı ve ortamın iklim ve toprak şartları tarafından kontrol edilmektedir. Buradaki çalışmamızda ise, Artvin yöresinde, farklı bakı ve yükseltide yayılış gösteren doğal ormanlık alanlarda yaygın olarak yetişen bazı ağaç türlerinin yaprak ölü örtülerinin ayrışma oranları çalışılarak, ölü örtü ayrışmasında materyalin kimyasal yapısının, ayrışma ortamının mikroiklim şartlarının ve toprak özelliklerinin etkileri ortaya konulmaya çalışılmıştır. Arazi ortamında ölü örtü ayrışma deneyi için kayın, meşe, göknar ve sarıçam türlerinin yaprak ölü örtüleri kullanılmıştır. Arazide ölü örtü ayrışmasını araştırmak için, özel olarak hazırlanan ölü örtü torbaları (litter bags) içerisine konulan yaprak ölü örtü örneklerinin (yaprak yada ibre), iki farklı bakıya (kuzey ve güney) ve her bir bakının üç farklı yükseltisine (üst, orta, ve alt) yerleştirilmesiyle başlamış ve daha sonra her 6 ayda bir arazi örneklemesi yapılarak 2 yıl süreyle takip edilmiştir. Sonuçlar ölü örtü ayrışmasını etkileyen en baskın faktörün, ayrışan materyalin başlangıçta içerdiği lignin değerinin olduğunu göstermiştir. Yaprak ölü örtüsünde daha az lignin içeren meşe ve sarıçam türleri yapısında daha fazla lignin içeren kayın ve göknar türlerine göre daha hızlı ayrışmıştır. Türlerin yaprak ölü örtüleri bakıya gore karşılaştırıldığında en hızlı ayrışma kuzey bakıda, yükseltiye göre karşılaştırıldığında ise en hızlı ayrışma alt yükseltilerde gerçekleşmiştir. Mikroiklim ve toprak özellikleri, bakıya göre farklılık göstermekle birlikte, ayrışma üzerinde etkili olduğu tespit edilmiştir. Kuzey bakıda, gerçek evapotranspirasyon ayrışmayı sınırlarken, güney bakıda toprak sıcaklığının etkili olduğu bulunmuştur. Her iki bakı da dikkate alındığında ise ölü örtü ayrışması üzerinde ayrışan materyalin içerdiği lignin miktarının ve ayrışmanın gerçekleştiği ortamın toprak solunum oranının ölü örtü ayrışma oranları üzerinde belirliyici faktörler olduğu ortaya konulmuştur.

Litter Mass Loss Rates in Deciduous and Coniferous Trees in Artvin, Northeast Turkey: Relationships with Litter Quality, Microclimate, and Soil Characteristics

Plant litter decomposition is controlled by both biotic and abiotic factors. It has been widely hypothesized that litter quality and climatic and soil conditions regulate decomposition. The present study examined the decomposition of native forest tree litter on 2 aspects (the north and the south) and at 3 altitudes (top, middle, and bottom) on each aspect in Artvin province to determine the influence of litter quality, microclimate, and soil characteristics on the rate of decomposition. A litter-bag experiment was performed using beech, oak, fir, and pine litter. The litter bags were placed on the north- and south-facing sites and at 3 altitudes on each aspect and were sampled every 6 months for 2 years. The dominant rate-regulating factor on the litter mass loss rates was found to be the lignin concentration of the litter. The litter from oak and pine contained relatively low lignin levels, and these litter types exhibited significantly faster rates of decay than the highly lignified beech and fir litter. The litter placed on the north-facing site decomposed much faster compared to the south-facing site, and the litter placed at the top altitude on each aspect showed the lowest decay rates compared to either the bottom or middle position throughout the study period. The microclimate and soil characteristics also helped to explain the variation in the litter mass losses, but their effects were less and also showed variations according to the aspects. On the north-facing sites, behind the initial lignin concentration, the litter decomposition was limited by actual evapotranspiration (AET), whereas on the south-facing sites the limiting factor on litter decomposition was soil temperature. However, when the 2 aspects were considered together, lignin concentrations and soil respiration rates were found to be better predictors of the mass loss rates in these forest ecosystems.

___

  • Aber, J.D., J.M. Melillo and C.A. McClaugherty. 1990. Predicting long term pattern of mass loss, nitrogen dynamics and soil organic matter formation from fine litter chemistry in temperate forest ecosystems. Can. J. Bot. 68: 2201-2269
  • Aerts, R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos. 79: 439-449.
  • Aerts, R. 2006. The freezer defrosting: Global warming and litter decomposition rates in cold biomes. J. Ecol. 94: 713-724.
  • Allen, S.E. 1989. Chemical Analysis of Ecological Materials. Blackwell Scientific Publications, Oxford.
  • Anderson, J.M. and J.S.I. Ingram. 1993. Tropical Soil Biology and Fertility. A Handbook for Methods. CAB International, Oxon.
  • Barnes, B.V., D.R. Zak., S.R. Denton and S.H Spurr. 1998. Forest Ecology. 4thedition. John Wiley and Sons, New York.
  • Berg, B., M. Berg, P. Bottner, E. Box, A. Breymeyer, de Anta R. Calvo, M.M. Coûteaux, A. Gallardo, A. Escudero, W. Kartz, M. Madeira, E. Mãlkönen, C. McClaugherty, V. Meentemeyer, F. Mu oz, P. Piussi, J. Remacle and de Santo A. Virzo. 1993. Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality. Biogeochemistry. 20: 127-159.
  • Berg, B. and V. Meentemeyer. 2002. Litter quality in European transect versus carbon storage potential. Plant Soil. 242: 83-92.
  • Bottner, P., M.M. Couteaux, J.M. Aderson, B. Berg, G. Billes, T. Bolger, H. Casabianca, J. Romanya and P. Rovira. 2000. Decomposition of 13C labelled plant material in a European 60o-40olatitudinal transect of coniferous forest soils: simulation of climate change by translocation of soils. Soil Biol. Biochem. 32:527-543
  • Couteaux, M.M., P. Bottner and B. Berg. 1995. Litter decomposition, climate and litter quality. Trends in Ecol. Evol. 10: 63-66.
  • Couteaux, M.M., P. Bottner, J.M. Anderson, B. Berg, T. Bolger, P. Casals, J. Romanya, J.M. Thiery and V.R. Vallejo. 2001. Decomposition of 13C labelled standard plant material in a latitudinal transect of European coniferous forests: differential impact of climate on the decomposition of soil organic matter compartments. Biogeochemistry. 54: 147-170.
  • Cox, P., S.P. Wilkinson and J.M. Anderson. 2001. Effects of fungal inocula on the decomposition of lignin and structural polysaccharides in Pinus sylvestris litter. Biol. Fertil. Soils. 33: 246-251.
  • Edwards, N.T. 1982. The use of soda-lime for measuring respiration rates in terrestrial systems. Pedobiologia. 23: 321-330.
  • Fierer, N., J.M. Craine, K. McLauchlan and J.P. Schimel. 2005. Litter quality and the temperature sensitivity of decomposition. Ecology. 86: 320-326.
  • Fioretto, A., A. Musacchio, G. Andolfi, A. Virzo De Santo. 1998. Decomposition dynamics of litters of various pine species in a Corsican pine forest. Soil Biol. Biochem. 30: 721–727.
  • Heal, O.W., J.M. Anderson and M.J. Swift. 1997. Plant litter quality and decomposition: An historical overview. In Driven by Nature: Plant Litter Quality and Decomposition, Cadisch G, Giller K E (eds), CAB International Wallingford, UK, pp. 3-45.
  • Johansson, M.B., B. Berg and V. Meentemeyer. 1995. Litter mass-loss rates in late stages of decomposition in a climatic transect of pine forests. Long-term decomposition in a Scots pine forest. IX. Can. J. Botany. 73: 1509-1521.
  • Kurz-Besson, C., M.M. Couteaux, J.M. Thiery, B. Berg and J. Remacle. 2005. A comparison of litterbag and direct observation methods of Scots pine needle decomposition measurement. Soil Biol. Biochem. 37: 2315-2318.
  • Kurz-Besson, C., M.M. Couteaux, B. Berg., J. Remacle, C. Ribeiro, J. Romanya and J.M. Thiery. 2006. A climate response function explaining most of the variation of the forest floor needle mass and the needle decomposition in pine forest across Europe. Plant Soil. 285: 97-114.
  • Liski, J., A. Nissinen, M. Erhard and O. Taskinen. 2003. Climatic effects on litter decomposition from artic tundra to tropical rainforest. Global Change Biol. 9: 575-584.
  • McClaugherty, C. and B. Berg. 1987. Cellulose, lignin and nitrogen concentrations as rate regulating factors in late stages of forest litter decomposition. Pedobiologia. 30: 101-112.
  • Meteorology Office. 2005. DMİ Artvin Meteorology Station, Artvin.
  • Mudrick, D.A., M. Hoosein, R.R. Hicks and E.C. Townsend. 1994. Decomposition of leaf litter in an Appalachian forest: effects of leaf species, aspect, slope position and time. For. Ecol. Man. 68: 231-250.
  • Murphy, K.L., J.M. Klopatek and C.C. Klopatek. 1998. The effects of litter quality and climate on decomposition along an elevational gradient. Ecol. Appl. 8: 1061-1071.
  • Neely, C.L., M.H. Beare, W. Hargrove and D.C. Coleman. 1991. Relationships between fungal and bacterial substrate-induced respiration, biomass and plant residue decomposition. Soil Biol. Biochem. 23: 947-954.
  • Nelson, D.W. and L.E. Sommers. 1982. Total carbon, organic carbon and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Am Soc Agr Madison, Wisconsin.
  • Olson, J.S. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology. 44: 322-331.
  • Prescott, C.E. 1996. Influence of forest floor type on rates of litter decomposition in microcosms. Soil Biol. Biochem. 28: 1319- 1325.
  • Raich, J.W., R.D. Bowden and P.A. Steudler. 1990. Comparison of two static chamber techniques for determining carbon dioxide efflux from forest soils. Soil Sci. Soc. Am. J. 54: 1754-1757.
  • Rowland, A.P. and J.D. Roberts. 1994. Lignin and cellulose fractionation in decomposition studies using Acid-Detergent Fibre methods. Com. Soil. Sci. Plant. Anal. 25: 269-277.
  • Sariyildiz, T. 2003. Litter decomposition of Picea orientalis, Pinus sylvestris and Castanea sativa trees grown in Artvin in relation to their initial litter quality variables. Turk. J. Agr. For. 27: 237- 243.
  • Sariyildiz, T. and J.M. Anderson. 2003a. Decomposition of sun and shade leaves from three deciduous tree species, as affected by their chemical composition. Biol. Fer. Soils. 37: 137-146.
  • Sariyildiz, T. and J.M. Anderson. 2003b. Interactions between litter quality, decomposition and soil fertility: a laboratory study. Soil Biol. Biochem. 35: 391-399.
  • Sariyildiz, T., J.M. Anderson and M. Kucuk. 2005a. Effects of tree species and topography on soil chemistry, litter quality and decomposition in Northeast Turkey. Soil Biol. Biochem. 37: 1695- 1706.
  • Sariyildiz, T., A. Tufekcioglu and M. Kucuk. 2005b. Comparison of decomposition rates of beech (Fagus orientalis Lipsky) and spruce (Picea orientalis (L.) Link) litter in pure and mixed stands of both species in Artvin, Turkey. Turk. J. Agr. For. 29: 429-438.
  • Scowcroft, P.G., D.R. Turner and P.M. Vitousek. 2000. Decomposition of Metrosideros polymorpha leaf litter along elevational gradients in Hawaii. Global Change Biol. 6: 73-85.
  • Swift, M.J., O.W. Heal and J.M. Anderson. 1979. Decomposition in Terrestrial Ecosystems. Blackwell Scientific Publications, Oxford.
  • Thornthwaite, C.W. and J.R. Mather. 1957. Instructions and tables for computing potential evapotranspiration and the water budget. Publ. Climat. 10: 185-311.
  • Trofymow, J.A., T.R. Moore, B. Titus, C. Prescott, I. Morrison, M. Siltanen, S. Smith, J. Fyles, R. Wein, C. Camire, L. Duschene, L. Kozak, M. Kranabetter and S. Visser. 2002. Rates of litter decomposition over 6 years in Canadian forests: Influence of litter quality and climate. Can. J. For. Res. 32: 789-804.
  • Upadhyay, V.P., J.S. Singh and V. Meentemeyer. 1989. Dynamics and weight loss of leaf litter in central Himalayan forests: Abiotic versus litter quality influences. J. Ecol. 77: 147-161.
  • Vitousek, P.M., D.R. Turner, W.J. Parton and R.L. Sandford. 1994. Litter decomposition on the Mauna Loa environmental matrix, Hawaii: Patterns, mechanisms and models. Ecology. 75: 418- 429.
  • Walse, C., B. Berg and H. Sverdrup. 1998. Review and synthesis of experimental data on organic matter decomposition with respect to the effect of temperature, moisture, and acidity. Envir. Rev. 6: 25-40.
  • Yanai, R.D., S.V. Stehman, M.A. Arthur, C.E. Prescott, A.J. Friedland, T.G. Siccama and D. Binkley. 2003. Detecting change in forest floor carbon. Soil Sci. Soc. Am. J. 67: 1583-1593.
Turkish Journal of Agriculture and Forestry-Cover
  • ISSN: 1300-011X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Some Properties of Eucalyptus Wood Flour Filled Recycled High Density Polyethylene Polymer-Composites

Fatih MENGELOĞLU, Kadir KARAKUŞ

Litter mass loss rates in deciduous and coniferous trees in Artvin, northeast Turkey: Relationships with litter quality, microclimate, and soil characteristics

Mehmet KÜÇÜK, Temel SARIYILDIZ

Effect of Different Planting Dates on Yield and Yield Components of Peanut (Arachis hypogaea L.)

Öner CANAVAR, Mustafa Ali KAYNAK

Genetic Analysis of Grain Yield and Starch Content in Nine Maize Populations

Zvonimir ZDUNIC, Anto MIJIC, Krunoslav DUGALIC, Domagoj SIMIC, Josip BRKIC, Ana MARJANOVIC-JEROMELA

Seed Quality, and Fatty Acid and Sugar Contents of Pepper Seeds (Capsicum annuum L.) in Relation to Seed Development and Drying Temperatures

İbrahim DEMİR, Aziz TEKİN, Z. Aytanga ÖKMEN, Gamze OKÇU, Burcu B. KENANOĞLU

Production Potential of a Natural Pasture Compared to a Wheat Pasture, Both Grazed by Lactating Goats under Mediterranean Climate Conditions

Basri Hakan HAKYEMEZ, Ahmet GÖKKUŞ, İsmail Yaman YURTMAN, Türker SAVAŞ

Doğu Karadeniz Bölgesi, Artvin Yöresi, Yapraklı ve İğne Yapraklı Ormanlarının Ölü Örtü Kütle Azalma Oranları: Ölü Örtünün Kimyasal Yapısının, Mikroiklim ve Toprak Özelliklerinin Ayrışma ile Olan İlişkisi

Temel SARIYILDIZ, Mehmet KÜÇÜK

Chemical Control of Septoria Blight of Parsley Caused by Septoria petroselini

Fatih Mehmet TOK

Host Preference and Nutrition Efficiency of the Gypsy Moth, Lymantria dispar L. (Lymantriidae: Lepidoptera), on Different Poplar Clones

Mehrdad Ghodskhahe DARYAEI, Simin DARVISHI, Kayvan ETEBARI, Mansor SALEHI

Field Resistance of Wheat (Triticum aestivum L.) Genotypes from Different Countries to Leaf Rust (Puccinia triticina)

Beyhan AKIN, Nusret ZENCİRCİ, İzzet ÖZSEVEN