Assessment of pretreatments on drying kinetics and quality characteristics of thin-layer dried red pepper

In this study, the effect of pretreatments (hot water blanching, microwave blanching, and ohmic heating) on the drying kinetics and quality characteristics of red pepper, dried at 60 and 70 °C, was investigated. The drying times varied between 205–290 min, depending on the pretreatment and temperature applied. The drying rate also changed based on the pretreatment and the falling rate period was observed. Four mathematical models were fitted to experimental data and the logarithmic model was found to be the best for all of the samples. Effective moisture diffusivity values obtained from Fick’s second law of diffusion ranged from 6.11 × 10–10 to 9.31 × 10–10 m2 s–1. The total phenolic contents, antioxidant capacities, and red pigment amounts of the dried peppers varied between 6.95 and 9.45 mg GAE g–1dry matter (DM), 2610.43 and 4463.96 mmol AEAC 100 g–1DM, and 184 and 443mg 100 g–1DM, respectively. Rehydration ability of pretreated samples was similar to or slightly lower than that of the untreated samples. As a result, it can be suggested that ohmic heating before drying at a temperature of 70 °C could be a promising alternative pretreatment to decrease drying time and produce high-quality dried red pepper.

___

  • Ayensu A, 1997, SOL ENERGY, V59, P121, DOI 10.1016/S0038-092X(96)00130-2
  • Beigi M, 2016, HEAT MASS TRANSFER, V52, P1435, DOI 10.1007/s00231-015-1646-8
  • Bhat S, 2017, FOOD SCI BIOTECHNOL, V26, P29, DOI 10.1007/s10068-017-0004-7
  • BlancoRios AK, 2017, CIENCIA RURAL, V47, P1
  • Chavez-Mendoza C, 2015, ANTIOXIDANTS, V4, P427, DOI 10.3390/antiox4020427
  • Cruz AC, 2015, INT J FRUIT SCI, V15, P54, DOI 10.1080/15538362.2014.931166
  • Darvishi H., 2014, Journal of the Saudi Society of Agricultural Sciences, V13, P130, DOI 10.1016/j.jssas.2013.03.002
  • Delfiya A, 2017, J FOOD PROCESSING PR, V42
  • Deng LZ, 2018, DRY TECHNOL, V36, P893, DOI 10.1080/07373937.2017.1361439
  • Deng LZ, 2019, CRIT REV FOOD SCI, V59, P1408, DOI 10.1080/10408398.2017.1409192
  • Di Scala K, 2008, LWT-FOOD SCI TECHNOL, V41, P789, DOI 10.1016/j.lwt.2007.06.007
  • Diamante LM, 2010, INT J FOOD SCI TECH, V45, P1956, DOI 10.1111/j.1365-2621.2010.02345.x
  • Doymaz I, 2018, J FAC ENG ARCHIT GAZ, V33, P833, DOI 10.17341/gazimmfd.416386
  • Falade KO, 2007, J FOOD ENG, V79, P724, DOI 10.1016/j.jfoodeng.2006.01.081
  • Faustino JMF, 2007, FOOD BIOPROD PROCESS, V85, P163, DOI 10.1205/fbp07009
  • Gachovska TK, 2009, J SCI FOOD AGR, V89, P2372, DOI 10.1002/jsfa.3730
  • Guida V, 2013, LWT-FOOD SCI TECHNOL, V53, P569, DOI 10.1016/j.lwt.2013.04.006
  • Hassan-Beygi SR, 2009, INT AGROPHYS, V23, P129
  • Jabeen Rifat, 2015, Cogent Food & Agriculture, V1, DOI 10.1080/23311932.2015.1036485
  • Kaur R, 2018, INT J CURRENT MICROB, V7, P3275
  • Lutz M, 2015, CYTA-J FOOD, V13, P541, DOI 10.1080/19476337.2015.1012743
  • Madrau MA, 2009, EUR FOOD RES TECHNOL, V228, P441, DOI 10.1007/s00217-008-0951-6
  • Mothibe KJ, 2014, DRY TECHNOL, V32, P1762, DOI 10.1080/07373937.2014.934830
  • Multari S, 2018, J FOOD COMPOS ANAL, V72, P75, DOI 10.1016/j.jfca.2018.06.008
  • Naderinezhad S, 2016, FOOD SCI NUTR, V4, P110, DOI 10.1002/fsn3.258
  • Nadi F, 2018, HEAT MASS TRANSFER, V54, P1853, DOI 10.1007/s00231-018-2279-5
  • Nayak PK, 2018, CHEM ENG COMMUN, V205, P1261, DOI 10.1080/00986445.2018.1446003
  • Obanda M, 1997, J SCI FOOD AGR, V74, P209, DOI [10.1002/(SICI)1097-0010(199706)74:2<209::AID-JSFA789>3.0.CO;2-4, 10.1002/(SICI)1097-0010(199706)74:2<209::AID-JSFA789>3.3.CO;2-W]
  • Onal B, 2019, FOOD BIOPROD PROCESS, V115, P87, DOI 10.1016/j.fbp.2019.03.002
  • Rayaguru K., 2012, International Food Research Journal, V19, P1503
  • Reis RC, 2013, BRAZ J CHEM ENG, V30, P337, DOI 10.1590/S0104-66322013000200011
  • Reyes A, 2011, DRY TECHNOL, V29, P1076, DOI 10.1080/07373937.2011.568657
  • Roberts JS, 2008, J FOOD ENG, V89, P460, DOI 10.1016/j.jfoodeng.2008.05.030
  • Ruttarattanamongkol K, 2016, J FOOD SCI TECH MYS, V53, P1811, DOI 10.1007/s13197-015-2086-7
  • Sabry Z.A., 2016, MIDDLE E J APPL SCI, V6, P349
  • Salengke S, 2005, DRY TECHNOL, V23, P551, DOI 10.1081/DRT-200054131
  • Sanchez C, 2014, FOOD CHEM, V163, P37, DOI 10.1016/j.foodchem.2014.04.041
  • Shairnaa G. A., 2016, NAT PROD CHEM RES, V4, P218, DOI DOI 10.4172/2329-6836.1000218
  • Sharma R, 2015, J FOOD SCI TECH MYS, V52, P3433, DOI 10.1007/s13197-014-1374-y
  • Singh M, 2000, INT J FOOD PROP, V3, P249, DOI 10.1080/10942910009524631
  • Sobukola O. P., 2007, NIGERIAN FOOD J, V25, P146
  • Song XJ, 2009, DRY TECHNOL, V27, P969, DOI 10.1080/07373930902902099
  • Srimagal A, 2017, J FOOD SCI TECH MYS, V54, P1192, DOI 10.1007/s13197-017-2518-7
  • Sturm B, 2012, DRY TECHNOL, V30, P1570, DOI 10.1080/07373937.2012.698439
  • Tunde-Akintunde T. Y., 2014, Agricultural Engineering International: CIGR Journal, V16, P108
  • Turkmen N, 2005, FOOD CHEM, V93, P713, DOI 10.1016/j.foodchem.2004.12.038
  • Vega-Galvez A, 2008, J FOOD ENG, V85, P42, DOI 10.1016/j.jfoodeng.2007.06.032
  • Vega-Galvez A, 2009, FOOD CHEM, V117, P647, DOI 10.1016/j.foodchem.2009.04.066
  • Walther BA, 2005, ECOGRAPHY, V28, P815, DOI 10.1111/j.2005.0906-7590.04112.x
  • Wang J, 2017, FOOD CHEM, V220, P145, DOI 10.1016/j.foodchem.2016.09.200
  • Wang ZF, 2007, FOOD RES INT, V40, P39, DOI 10.1016/j.foodres.2006.07.017
  • Won YC, 2015, DRY TECHNOL, V33, P926, DOI 10.1080/07373937.2014.999371
  • Yagcioglu A., 1999, INT C AGR MECH EN 7, P565
  • Yang XH, 2018, J FOOD ENG, V231, P101, DOI 10.1016/j.jfoodeng.2018.03.013
  • Yemenicioglu A, 1997, J FOOD SCI, V62, P508, DOI 10.1111/j.1365-2621.1997.tb04417.x
  • Zhong TX, 2003, BIORESOURCE TECHNOL, V87, P215, DOI 10.1016/S0960-8524(02)00253-5
  • Zhou LY, 2016, INT J FOOD SCI TECH, V51, P842, DOI 10.1111/ijfs.13050