FEN ÖĞRETİMİNDE; YAPILANDIRMACI YAKLAŞIMA DAYALI TEKNOLOJİ DESTEKLİ İŞBİRLİKLİ GRUP ARAŞTIRMA YÖNTEMLERİ

Şüphesiz öğretim süreci, öğrencinin bilgi ve becerilerini kurgulayıp aktif olarak kullanabileceği, araştırıp sorgulayarak elde ettiği verileri kendine özgü yapı kazandırıp geliştirebileceği etkinliklere imkân verecek şekilde planlanmalıdır. Bu çalışmada; yapılandırmacı öğrenme yaklaşımının temel ilkeleri, öğrenci ve öğretmenin bu süreç içerisindeki rolleri ile teknolojinin yapılandırmacı öğretim stratejileri ile nasıl etkin olarak kullanılabileceğine yönelik deneysel bir öğretim süreci uygulanmıştır. İlköğretim Fen ve Teknoloji dersi “Genetik Mühendisliği ve Biyoteknoloji” konusu bilgisayar ve web tabanlı teknolojiler desteğinde grup araştırma ve tartışma yöntemleri ile öğretilmeye çalışılmıştır. Deney grubundaki öğrenciler bilgisayar desteğinde araştırma, tartışma, animasyon ve sunumlar ile deney ve pratik yapma ve beyin fırtınası gibi interaktif etkinliklerle çalışmışlardır. Öğretim sürecinin başarısı; etkinlik ürünlerinin nitel ve “Erişi testi”, “Biyoteknolojiye yönelik tutum ölçeği” ve “Teknoloji destekli öğretime yönelik tutum ölçeği” ile değerlendirilmiştir. Sonuçlar değerlendirilerek yorumlanmıştır.

TECHNOLOGY SUPPORTED CONSTRUCTIVISM BASED COLLABORATIVE GROUP RESEARCH METHODS IN SCIENCE EDUCATION

Definitely; classroom courses should be organized with respect to activities that students could able to organize their knowledge and abilities to apply actively and develop investigated and examined data characteristically in learning process. In this research; an experimental study design were organized regarding fundamental principles of constructivism, integration of technology with constructivist strategies and roles of instructor and learner in teaching process. Primary school, Science and Technology lesson, topic “Genetical Engineering and Biotechnology” were thought in technology supported web based instruction within group research and discussion methods. Students in experimental group have studied with computer supported investigations, animations, discussions, presentations and practice themes with online experiments. Bran storming was also applied as interactive discussion techniques. Instructional accomplishment was evaluated qualitatively by group yields and quantitatively by “achievement test”, attitude scale towards biotechnologies” and “attitude scale toward technology based instruction”. Results are analyzed and interpreted.

___

  • Abbott, S., Ryan, T. (1999). Constructing knowledge, reconstructing schooling. Educational Leadership, Vol 57(3), 66-69.
  • Brooks, G., Brooks, M. G. (1993). The case for constructivist classrooms. Alexandria, Virginia. ASCD.
  • Brooks, G., Brooks, M. G. (1999). The courage to be a constructivist. Educational Leadership, Vol 57(3), 18-24.
  • Crook, C. (1998). Children as computer users: The case of collaborative learning. Computers and Education, Vol 30(3/4), 237–247.
  • Denning, R., Smith, P. J. (1997). Cooperative learning and technology. Journal of Computers in Mathematics and Science Teaching, Vol 16(2/3), 177-200.
  • Duffy, T., Jonassen, D. (1992). Constructivism and the technology of instruction. Hillsdale, NJ: Lawrence Erlbaum Associates. Erdem, E. (2001). Program geliştirmede
  • yapılandırmacılık yaklaşımı.
  • Yayımlanmamış yüksek lisans tezi. Hacettepe Üniversitesi, Sosyal Bilimler Enstitüsü, Ankara.
  • Guzdial, M. (2001). "Use of collaborative multimedia in computer science classes". ACM SIGCSE Bulletin. Proceedings of the 6th annual conference on innovation and technology in computer science education. ITCSE '01, Volume 33(3).
  • Hyun, E. (2005). A study of 5-to 6-year-old children’s peer dynamics and dialectical learning in a computer-based technology-rich classroom environment. Computers & Education, Vol 44(1), 69–91.
  • Jensen, M., Moore R., Hatch, J. (2002). Group web projects for freshman anatomy and physiology students. The American Biology Teacher, Vol 64(4), 206- 209.
  • Jonassen, D. H., Peck, L., Wilson, B.G. (1999). Learning with technology: A Constructivist perspective. New Jersey. Prentice. Hall.
  • Kirkpatrick, G., Orvis, K. (2002). A teaching model for biotechnology and genomics education. Journal of Biological Education, Vol 37(1), 31-35.
  • Kreijns, K., Kirschner, P. A., Jochems, W., Buuren, H. (2007). Measuring perceived sociability of computer-supported collaborative learning environments. Computers & Education, Vol 49(2), 176–192.
  • Lai, C. Y., Wu, C. C. (2006). Using handhelds in a Jigsaw cooperative learning environment. Journal of Computer Assisted Learning, Vol 22(4), 284–297.
  • Lazarowitz, R., Lazarowitz, R.H., Baird, J.H. (1994). Learning science in a cooperative setting: Academic achievement and affective outcomes. Journal of Research in Science Teaching, Vol 31(10), 1121-1131.
  • Lord, T. R. (1994). Using constructivism to enhance student learning in college biology. Journal of College Science Teaching, Vol 23(6), 346-348.
  • Lord, T. R. (1999). A comparison between traditional and constructivist teaching in environmental science. Journal of Environmental Education, Vol 30(3), 22- 28.
  • Lorsbach, A., Tobin, K. (1993). Constructivism as a reference for science teaching. NARST News, Vol 34(3), 9-11.
  • Marlowe, B., Page, M. L. (1998). Creating and sustaining the constructivist classroom. USA. Corwin Press.
  • Nakiboğlu, M. (2003). Kuramdan uygulamaya “Beyin fırtınası” yöntemi. Türk Eğitim Bilimleri Dergisi, Cilt: 1, Sayı: 3, Ankara (343).
  • Nakiboğlu, M., Altıparmak, M. (2002). Aktif öğrenmede bir grup tartışması yöntemi olarak “Beyin fırtınası”. V. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi’nde sunulmuş bildiri. 16-18 Eylül 2002, Ankara.
  • Paulus, P.B., Dzindolet, M.T. (1993). Social influence processes in group brain storming. Journal of Personality and Social Psychology, Vol 64(4), 575- 586.
  • Perkins, D. N. (1997). The many faces of constructivism. Educational Leadership, Vol 57(3), 6-11.
  • Raghavan, K., Glaser, R., Sartoris, M. (1995). MARS: A computer supported middle school science curriculum to foster model-based analytical reasoning. Prooceedings from the “Working Conference on Applications of Technology in Science Classroom”. Columbus. OH: The National Center for Science Teaching and Learning.
  • Riffell, S., Sibley D. (2004). Using web-based instruction to improve large undergraduate biology courses: An evaluation of a hybrid course format. Computer & Education, Vol 44(3), 217-235.
  • Selley, N. (1999). The Art of Constructivist Teaching in the Primary School. London. David Fulton Publishers.
  • Strijbos, J.W. Martens, R.L., Jochems, W.M.G. (2004). Designing for interaction: Six steps to designing computer-supported group-based learning. Computers & Education, Vol 42(4), 403–424.
  • Taylor, C., Lyons, M. (1978). How to design a program evaluation. USA. University of California.
  • Wilson, B.G. (1997). Reflections on constructivism and instructional design. Denver-Englewood Cliffs NJ Educational Technology Publications.
  • Windschitl, M., Andre, T. (1998). Using computer simulations to enhance conceptual change: the roles of constructivist instruction and student epistemological beliefs. Journal of Research in Science Teaching, Vol 35(2), 145-160.
  • Yager, R. (1993). The constructivist learning model: Toward real reform in science education. The Science Teacher, Vol 60(1), 53-57.
  • Yaşar, Ş. (1998). Yapısalcı kuram ve öğretme-öğrenme süreci. VII. Ulusal Eğitim Bilimleri Kongresi’nde sunulmuş bildiri. Selçuk Üniversitesi. 9-11 Eylül 1998, Konya.
  • Yıldırım, A., Şimşek, H. (1999). Nitel araştirma yöntemleri. Ankara. Seçkin Yayınevi.
Türk Eğitim Bilimleri Dergisi-Cover
  • Başlangıç: 2003
  • Yayıncı: ANKARA HACI BAYRAM VELİ ÜNİVERSİTESİ