Türkiye Florasında Peyzaj Özelliği Gösteren Hiperakümülatör Bitkilerin Maden Alanlarının Onarımında Kullanımı

Madencilik faaliyetleri sanayi devriminden bu yana insan yaşamının sürdürülebilirliğinde, ülkelerin refah ve kalkınma düzeylerinin ilerlemesinde bir gösterge olarak kabul edilmektedir. Fakat maden işletme faaliyetleri süresince uygulanan bazı fiziksel ve kimyasal işlemler çevresel sorunları da beraberinde getirmektedirler. Bu sorunlar toprakların verimsizleşmesi, yerel endemik türlerin kaybolması, flora ve faunanın bozulması ve doğal peyzajın tahrip edilmesi olarak sıralanabilir. Madenlerin doğayı tahrip etmeden işletilerek devamında insanların ve diğer canlıların güvenli kullanımını sağlamaları için birçok farklı doğal restorasyon yöntemleri bulunmaktadır. Bu yöntemlerden biri de fitoremediasyon yöntemidir. Fitoremediasyon yönteminde kullanılan bitkiler hiperakümülatör bitki olarak adlandırılmaktdır. Bu bitkiler çok yüksek konsantrasyonlarda ağır metallerle kirletilmiş topraklarda bile hayatlarını devam ettirebilmektedirler. Doğada bilinen 11 familyadan yaklaşık 400 bitkinin hiperakümülatör özellikte olduğu bilinmektedir. Bu familyalar Asteraceae, Brassicaceae, Caryophyllaceae, Cyperaceae, Cunouniaceae, Fabaceae, Flacourtiaceae, Lamiaceae, Poaceae, Violaceae ve Euphobiaceae. Bu çalışmada Türkiye florasında bulunan 38 hiperakümülatör bitki türü ile ilgili yerli ve yabancı literatür araştırmaları yapılmış. Bu bilgiler ışığında bu türlerden 21’inin peyzaj onarım çalışmalarında renk, doku ve form özellikleri nedeniyle kullanılabilirliği ile ilgili önerilerde bulunulmuştur.

___

  • [1] Kivinen S. Sustainable post-mining land use: are closed metal mines abandoned or re-used space? Sustainability. 2017; 9, 1705.
  • [2] Sonter LJ, Barrett DJ, Moran CJ, Soares-Filho BSA. Land system science meta-analysis suggests we underestimateintensivelandusesinlandusechangedynamics. Journal Land Use Science. 2015; 10,191–204.
  • [3] Khalil A, Hanich L, Bannari A, Zouhri L, Pourret, O, Hakkou R. Assessment of soil contamination around an abandoned mine in a semi-arid environment using geochemistry and geostatistics: pre-work of geochemical process modeling with numerical models. Journal Geochemistry Explorer. 2013; 125:117–129.
  • [4] Bacchetta G, Cappai G, Carucci A, Tamburini E. Use of native plants for the remediation of abandon edminesitesin Mediterranean semiarid environments. Bull Environ Contam Toxicol. 2015; 94:326–333.
  • [5] Kim SM, Suh J, Oh S, Son J, Hyun CU, Park HD, Shin SH, Choi Y. Assessing and prioritizing environmental hazards associated with abandoned mines in Gangwon-do, South Korea: the Total Mine Hazards Index. Environmental Earth Sciences. 2016; Volume 75, Article number: 369.
  • [6] Salt DE, Rauser WE. Mg ATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiology.1995; 107, 1293-1301
  • [7] Glass DJ. İnternational activities in phytoremediation: Industry and market overwiev. Hazardous and Industrıal Wastes Book. Pages. 1999; 238-291.
  • [8] Arshad M, Silvestre J, Pinelli E, Kallerhoff J, Kaemmerer M, Tarigo A. A field study of lead phytoextraction by various scented pelargonium cultivars. Chemosphere. 2008; 71, 2187-2192.
  • [9] Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie. 2006; Volume 88, Issue 11, Pages 1707-1719.
  • [10] Turan M, Esringü A. Phytoremediation based on canola (Brassica Napus L.) and ındian mustard (Brassica Juncea L.) planted on spiked soil by aliquot amount of Cd, Cu, Pb and Zn. Plant Soil and Environment. 2007; 53(1):7-15.
  • [11] Saier MH, Trevors JT. Phytoremediation. Water Air Soil Pollution. 2010; 205 (Suppl 1):S61–S63.
  • [12] Singh S, Parihar P, Singh R, Singh VP, Prasad SM. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. Front Plant Science. 2016; 6: 1143.
  • [13] Manoja SR, Chinnannan K, Kadirvelu K, Arulselvia PI, ShanmugasundaramT, Bruno B, Rajkumar M. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review Journal of Environmental Management. 2020; Volume 254, 109779.
  • [14] Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety. 2019; Volume 174, 15 June Pages 714-727.
  • [15] Saxena G, Purchase D, Mulla SI, Saratale G.D, Bharagava RN. Phytoremediation of heavy metal-contaminated sites: Eco-environmental concerns, field studies, sustainability ıssues, and future prospects. Reviews of Environmental Contamination and Toxicology. 2019; Volume 249 pp 71-131.
  • [16] Canak S, Berezljev L, Borojevic K, Asotic J, Ketin S. Bıoremedıatıon and "Green Chemıstry". Fresenius Environmental Bulletin. 2019; Volume 28 pages 3056-3064
  • [17] Van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H. Hyperaccumulators of metal and metalloid elements: facts and fiction. Plant Soil. 2013; 362:319–334
  • [18] Baker AJM, Brooks RR. Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry. Biorecovery. 1989; 1:81–126
  • [19] Robinson B, Duwig C, Bolan N, Marchetti M, Moni C, Schroeter L, Dijssel C, Milne G, Clothier B. Arsenic hyperaccumulation by aquatic macrophytes in the Taupo volcanic zone, New Zealand. Environment Explorer Botany. 2006; 58(1-3):206–215.
  • [20] Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K.Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize? Journal of Hazardous Materials. 2014; Volume 266, 15, Pages 141-166.
  • [21] M. N.V.Prasad. Phytoremediation of Metals and Radionuclides in the Environment: The Case for Natural Hyperaccumulators, Metal Transporters, Soil-Amending Chelators and Transgenic Plants. Heavy Metal Stress in Plants. Springer-Verlag Berlin Heidelberg 2004 pp 345-391
  • [22] Kramer U. Metal hyperaccumulation in plants. Annual Review of Plant Biology. 2010; 61:517–534
  • [23] Özbek K. Hiperakümülasyon ve Türkiye florasındaki hiperakümülatör türler. Toprak Bilimi ve Bitki Besleme Dergisi. 2015; 3 (1) 37 – 43
  • [24] Eltrop,L., Brown,G., Hinchee,R.F. Olfenbuttel Lead tolerance of' betula and salix in the mining area of Mechernich, Germany. Plant Soil.1991; 131 (1991), pp. 275-285
  • [25] Bojarczuk K, Przybył K. Effects of polluted substrate on growt hand health of silver birch(Betula pendula Roth). Pollution Journal Environment Study. 2005; 14,677–684. [26] ] Reimann C, Arnoldussen MA, Boyd R, Finne TE, Koller F, Nordgulen Ø, Englmaier P. Element contents in leaves off our plant species (Birch, mountainash, fern an dspruce along anthropogenic and geogenic concentration gradients. Science Total Environment. 2007a; 377,416–433.
  • [27] Reimann C, Arnoldussen A, Finne TE, Koller F, Nordgulen Ø, Englmaler P. Element contents in mountain birch leaves, bark and wood under different anthropogenic and geogenic conditions. Appl. Geochemistry. 2007b; 22,1549–1566.
  • [28] Pajak,M., Halecki,W., Gasiorek,M. Accumulative response of Scots pine (Pinus sylvestrisL.) and silverbirch (Betula pendulaRoth) to heavy metals enhanced by Pb-Zn oremining and processing plants: Explicitly spatial considerations ofordinary kriging based on a GIS approach. Chemosphere 168. 2017; 851-859
  • [29] Maestri E, Marmiroli M, Visioli G, Marmiroli N. Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment. Environmental and Experimental Botany. 2013; Volume 68, Issue 1, Pages 1-13.
  • [30] Stein AJ, Höreth S, Melo JRF, Syllwasschy L, Lee G, Garbin M, Clemens S, Kramer U. Relationships between soil and leaf mineral composition are element-specific, environment-dependent and geographically structured in the emerging model Arabidopsis halleri. New Phytology. 2017; 213, Pages 1274-1286.
  • [31] Ouzounidou G, Symeonidis L, Babalonas D, Karataglis S. Comparative Responses of a Copper-tolerant and a Copper-sensitive Population of Minuartia hirsuta to Copper Toxicity. Journal of Plant Physiology. 1994; Volume 144, Issue 1, Pages 109-115.
  • [32] Konstantinou M. Heavy metal uptake by species from metalliferous sites in Northern Greece. Mıneral Resources ın a Sustaınable World 13th sga Biennial Meeting. 2015; Proceedings, Volume 4
  • [33] Wenzel WW, Jockwer F. Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps. Environment Pollution. 1999; 104 (1), pp. 145-155.
  • [34] Fernández R, Bertrand A, García JI, Tamés RS, González A. Lead accumulation and synthesis of non-protein thiolic peptides in selected clones of Melilotus alba and Melilotus officinalis. Environment Experimental Botany. 2012; 78, 18–24.
  • [35] Karimi N, Ghaderian SM, Maroofi H, Schat H. Analysis of arsenic in soil and vegetation of a contaminated area in Zarshuran. Iran Interational Journal Phytoremediate. 2010; 12:159–173
  • [36] Altınözlü H, Karagöz A, Polat T, Ünver İ. Nickel hyperaccumulation by natural plants in Turkish serpentine soils. Turk Journal Botany. 2012; 36:269–280.
  • [37] Turgay OC, Görmez A, Bilen S. Isolation and characterization of metal resistant-tolerant rhizosphere bacteria from the serpentine soils in Turkey. Environment Monitoring and Assessment. 2012; 184(1):515-26.
  • [38] Pollard A J, Reeves RD. Baker AJM. Facultative hyperaccumulation of heavy metals and metalloids. Plant Science.2014; 217–218:8–17.
  • [39] Palutoglu M, Akgül B, Suyarko, Yakovenko, M, Kryuchenko N, Sasmaz A. Phytoremediation of cadmium by native plants grown on mining soil. Bulletin of Environmental. Contamination and Toxicology.2018; 100:293–297.
  • [40] Vwıoko DE, Anolıefo Go, Fashemı SD. Metal concentration in plant tissues of ricinus communis l. (Castor oil) grown ın soil contaminated with spent lubricating oil. All rights reserved Journal Apply Science Environment Volume. 2006; 10 (3) 127 – 134. [41] Rajkumar M, Freitas H. Influence of metals resistant- plant growth-promoting bacteria on the plant growth of Ricinus cummunis in soil contaminated with heavy metals. Chemosphere. 2008; 71:834-842.
  • [42] Olivares R, Carrillo-González R, González-Chávez M, Del CA, Soto- Hernández RM. Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production. Journal of Environmental Management. 2012; 114:316-323
  • [43] Yashim, Z. I., Agbaji, E. B., Gimba, C. E., Idris, S. O. Phytoremediation potential of ricinus communis l. (Castor oil plant) in Northern Nigeria. International Journal of Plant & Soil Science. 2016; 10(5): 1-8.
  • [44] Parzych, A.E., Sobisz, Z., Jonczak, J., 2017. Comparıng carex specıes of mıd-forest sprıng ecosystems ın terms of abılıty to accumulate macro- and mıcroelements. Journal of Ecological Engineering. Volume 18, Issue 5, pages 125–136
  • [45] Abe T, Fukami M, Ogassawara M. Cadmium accumulation in the shoots and roots of 93 weed species. Soil Science and Plant Nutrition. 2010; 54, 566–573.,
  • [46] Kostopoulou P, Kyrıazopoulos AP, Abraham EM, Parıssı Z.M, Karatassıou M, Barbayannıs N. Synergistic effect of selenium addition and water stress on melilotus officinalis L. mineral content. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2015; 43(2):447-454.
  • [47] Wu, Z., McGrouther, K., Chen, D., Wu, W., Wang, H. Subcellular distribution of metals within Brassica chinensis L. in response to elevated lead and chromium stress. Journal Agricultural Food Chemistry. 2013; 61:4715–4722.
  • [48] Han Y, Wu X, Gu J, Zhao J, Huang S. Yuan H, Fu J. Effects of organic acids on the photosynthetic and antioxidant properties and accumulations of heavy metals of Melilotus officinalis grown in Cu tailing. Environment Science Pollution Research. 2016; 23:17901–17909.
  • [49] Abdel-Sabour MF. Nickel accumulation parameters, coefficients of transfer, tolerance index, and nutrient uptake by red clover grown on nickel polluted soils. International Journal Environment Study. 1991; 37, 25–34.
  • [50] Guerra P, Ahumada, Carrasco A. Effect of biosolid incorporation to mollisol soils on Cr, Cu, Ni, Pb, and Zn fractionation, and relationship with their bioavailability. Chemosphere. 2007; 68, 2021–2027.
  • [51] Malizia D, Giuliano A, Ortaggi G, Masotti A. Common plants as alternative analytical tools to monitor heavy metals in soil. Chemistry Central Journal. 2012; 6, S6.
  • [52] Shahbaza AK, Iqbala M, Jabbarb A, Hussaina S, Ibrahima M. Assessment of nickel bioavailability through chemical extractants and red clover (Trifolium pratense L.) in an amended soil: Related changes in various parameters of red clover. Ecotoxicology and Environmental Safety. 2018; Volume 149, Pages 116-127.
  • [53] Aksoy A, Demirezen D, Fraxinus excelsior as a biomonitor of heavy metal pollution polish Journal of Environmental Studies. 2006; Vol. 15, No. 1, 27-33.
  • [54] Pinheiro JC, Marques CR, Pinto G, Bouguerra S, Mendo S, Gomes NC, Gonçalves F, Rocha-Santos T, Duarte AC, Roembke J, Sousa JP, Ksibi M, Haddioui A, Pereira R. The performance of Fraxinus angustifolia as a helper for metal phytoremediation programs and its relation to the endophytic bacterial communities. Geoderma. 2013; 202–203 171–182.
  • [55] Ghaderian AM, Ravandi AG. Accumulation of copper and other heavy metals by plants growing on Sarcheshmeh copper mining area, Iran. Journal of Geochemical Exploration. 2012; Volume 123, Pages 25-32.
  • [56] Cheng, S., Grosse, W., Karrenbrock , F., Thoennessen, M., 2002. Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecological Engineering. 18, 317–325.
  • [57] Philippe AG, Masotti V, Rabier J, Petit ME, Malleret L, Coulomb B, Schwob IL. Biomonitoring of epilobium hirsutum l. health status to assess water ecotoxicity in constructed wetlands treating mixtures of contaminants. Water. 2015; 7(2), 697-715.
  • [58] Brewın LE, Mehra A, Lynch T, Farago ME. Mechanısms of copper tolerance by armerıa marıtıma ın dolfrwynog bog, north wales ınıtıal studıes. Environmental Geochemistry and Health. 2003; 25: 147–156.
  • [59] Ciarkowska K, Hanus-Fajerska E. Remediation of soil-free grounds contaminated by zinc, lead and cadmium with the use of metallophytes. Polish Journal of Environment Study. 2008; Vol. 17, No. 5 707-712.
  • [60] Parys E, Wasilewska W, Siedlecka M, Zienkiewwicz M, Zak AD, Romanowska,. Metabolic Responses to Lead of Metallicolous and Nonmetallicolous Populations of Armeria maritima. Arch Environmental Contamination Toxicology. 2014; 67:565–577.
  • [61] Truyens S, Jambon I, Croes S, Janssen J, Weyens N, Mench M, Carleer R, Cuypers A, Vangronsveld J. The effect of long-term cd and ni exposure on seed endophytes of agrostis capillaris and their potential application in phytoremediation of metal-contaminated soils. International Journal of Phytoremediation. 2014; 16: 643–659.
  • [62] Seijo AR, Vila ML, Andrade ML. Pb pollution in soils from a trap shooting range and the phytoremediation ability of Agrostis capillaris L. Environmental Science and Pollution Research. 2016, Volume 23, Issue 2, pp 1312–1323.
  • [63] Nazır A, Naseem MMR, Ajaıb M, Khan N, Sıddıque F. Hyperaccumulators of heavy metals of ındustrıal areas of ıslamabad and rawalpındı. Pakistan Journal Botany. 2011; 43(4): 1925-1933.
  • [64] Padmavathiamma PK, Li LY. Phytoremediation technology: hyperaccumulation metals in plants. Water, Air, Soil Pollution. 2007; 184, 105–126.
  • [65] Mahmood T. Phytoextraction of heavy metals the process and scope for remediation of contaminated soils. 2010; Soil & Environ. 29(2): 91-109.
  • [66] Smith, M.M., Nkongolo, K.K. Physiological and Cytological Responses of Deschampsia cespitosa and Populus tremuloides to Soil Metal Contamination. 2015; Water, Air, & Soil Pollution volume 226, Article number: 125
  • [67] Simon L. Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth. Environmental Geochemistry and Health. 2005; Volume 27, pages 289–300.
  • [68] Touceda-Gonzalez M, Alvarez-Lopeza V, Prieto-Fernandez A, Rodríguez B, Trasar-Cepeda C, Mench M, Puschenreiter M, Quintela-Sabarís C, Macias-Garcia F, Kidd PS. Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in Cu-rich mine tailings. Journal Environment Management. 2017; 186, 301–313.
  • [69] Malagoli M, Rossignolo V, Salvalaggio N. Potential for phytoextraction of copper by Sinapis alba and Festuca rubra cv. Merlin grown hydroponically and in vineyard soils. Environment Science Pollution Research. 2014; 21:3294–3303. [70] Gomez J, Yunta F, Esteban E, Carpena RO, Zornoza P. Use of radiometric indices to evaluate Zn and Pb stress in two grass species (Festuca rubra L. and Vulpia myuros L.) .Environment Science Pollution Research. 2016; No, 23 pages 23239–23248.
  • [71] Bosiacki M, Zielezi Eski L. Phytoextractıon of nıckel by selected specıes of lawn grasses from substrates contamınated wıth heavy metals. Acta Science Pollution Hortorum Cultus. 2011; 10(3) 2011, 155-173.
  • [72] Golda S, Korzeniowska J. Compa rison of phytoremediation potential of three grass species in soil contaminated with cadmium. Environmental Protection and Natural Resources. 2016; Volume 27: Issue 1.
  • [73] Alexandrina M, Eften A, Anghel A, Marinescu M. Soıl contamınatıon ın the proxımıty of the hıstorıcal copper smelter - A Revıew. 18th International Multidisciplinary Scientific Geo Conference SGEM. 2018
  • [74] Pulford I, Watson C. Phytoremediation of heavy metal-contaminated land by trees a review. Environment Interntaional. 2003; 29, 529–540.
  • [75] Wenzel WW, Jockwer F. Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps. Environment Pollution. 1999; 104 (1), pp. 145-155
  • [76] Tlustoš, P., Pavlíková, D., Száková, J., Fischerová, Z., Balík, J., 2006. Exploitation of fast growing trees in metal remediation. Phytoremediation Rhizoremediation. pp. 83–102.
  • [77] Wieshammer G, Unterbrunner, R., Baares, G.T., Zivkovic, M.F., Puschenreiter, M., Wenzel, W.W. Phytoextraction of Cd and Zn from agricultural soils by Salix Ssp. and intercropping of Salix caprea and Arabidopsis halleri. Plant Soil. 2007; 298, 255–264.
  • [78] Surat H, Aybar M. Ağır metaller ile kirlenmiş alanların onarılmasında kullanılabilecek bitki türleri. Academic Research in Science and Engineering - Chapter 4. 2019
  • [79] Smith MM, Nkongolo KK. Physiological and cytological responses of deschampsia cespitosa and populus tremuloides to soil metal contamination. Water Air Soil Pollution. 2015; 226: 125
  • [80] Wang YD, Greger M. Clonal differences in mercury tolerance, accumulation, and distribution in willow. Journal Environment Quality. 2004; 33, 1779–1785.
  • [81] Tlustoš P, Pavlíková D, Száková J, Fischerová Z, Balík J. Exploitation of fast growing trees in metal remediation. Phytoremediation Rhizoremediation. 2006; pp. 83–102.
Türk Doğa ve Fen Dergisi-Cover
  • ISSN: 2149-6366
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bingöl Üniversitesi Fen Bilimleri Enstitüsü