Türkiye’de ölümcül heyelanların dağılım karakteristikleri ve ulusal ölçekte öncelikli alanların belirlenmesi

Türkiye’de her yıl onlarca kişinin ölümüne neden olan çok sayıda heyelan olayı meydana gelmektedir. Ancak Türkiye’de gerçekleşen heyelan olaylarının bu yönüyle ele alınması ve ölümlerin kaydedilmesi günümüze kadar ihmal edilmiştir. Bu kapsamda, 1929'dan 2019'a kadar Türkiye'de ölümcül heyelan olaylarını kapsayan bir veri tabanı, önceden belirlenmiş anahtar kelimeler kullanılarak akademik makaleler, afet ve şehir yıllık raporlarından, devlet ve yardım ajansları raporlarından, ulusal ve yerel basılı ve dijital medya raporlarını içeren çeşitli Türkçe kaynaklardan derlenmiştir. İncelenen dönemde, 1343 kişinin ölümüne neden olan 389 heyelan olayı tespit edilmiştir. Heyelan olayları ve ölümlerin zamansal dağılım karakteristiğini belirlemek için kullanılan Mann-Kendall (MK) testi ve Sen’s slope yöntemine göre 1929-2019 yıllarını kapsayan dönemde hem olay hem de ölü sayılarında artış eğilimi görülmektedir. Yıl içerisinde yaz mevsimde yoğunluk gösteren bu heyelan olayları, Doğu Karadeniz Bölümü ve İstanbul çevresi olmak üzere iki yoğunluk bölgesi oluşturmaktadır. Genel olarak, Doğu Karadeniz Bölümü doğal faktörlerle denetlenen ölümcül heyelanlar ile temsil edilirken, İstanbul ve çevresi antropojenik faktörlerle denetlenen ölümcül heyelanlar ile temsil edilmektedir. Mekânsal olarak ölümcül heyelanlar, 81 ilin 67’sindeki 227 farklı ilçede kaydedilmiştir. Öncelikli alanların belirlenmesi, heyelana maruz kalan yerleşim yerinin nüfusu ve kaydedilen heyelan sayısı ile hesaplanan olasılık değerinin, ölü sayısı ile ilişkisi üzerinden değerlendirilmiştir. Sonuç olarak, ölümcül heyelanların nihai dağılım desenine göre, topografik engebeliliğin ülke ortalamasının üzerinde olduğu Doğu Karadeniz Bölümü’nde yer alan il ve ilçelerdeki ölümlü heyelan frekansının ülkenin diğer engebeli bölümlerinden çarpıcı bir şekilde yüksek olduğu ortaya konulmuştur.

Distribution characteristics of fatal landslides in Turkey and determination of priority areas at national scale

Annually, a large number of landslide events that resulted in the deaths of dozens of people occur in Turkey. However, the preparation of an inventory of fatal landslide events in Turkey has been neglected until today. In this respect, a database on fatal landslide events in Turkey for the period from 1929 to 2019 was compiled from various sources comprising national and local printed and digital media reports with pre-determined keywords in Turkish, academic papers, disaster, and city annual reports, and government and aid agency reports. In the studied period, 389 landslides events that caused of death 1343 people were detected. According to the Mann-Kendall (MK) test and Sen's slope method, which is used to determine the temporal distribution characteristic of landslide events and deaths, an increasing trend is observed in both events and the number of deaths in the period comprising 1929-2019. These landslide events, which show intensity in the summer during the year, constitute two major density regions, the Eastern Black Sea Region and the Istanbul environment. In general, the Eastern Black Sea Region is represented by fatal landslides triggered by natural factors, while fatal landslides triggered by anthropogenic factors characterize the Istanbul and near vicinity. Spatially, fatal landslides were recorded in 227 different counties in 67 of 81 cities. The determination of the priority areas was evaluated by the population of the settlements exposed to the landslide and the probability value calculated with the number of landslides recorded and the relationship with the number of the dead. In conclusion, based on the final distribution pattern we revealed that the frequency of the landslides in provinces and districts where the topographic roughness is above the country average, at the Eastern Black Sea Region are strikingly high from the other hilly sections of the country.

___

  • AFAD (Afet ve Acil Durum Yönetimi Başkanlığı) (2018). . Son erişim 2 Mayıs 2020.
  • Ali Shah, Syed Mustakim & Hasan, G M Jahid. (2016). Interdependence between dry days and temperature of sylhet region: Correlation analysis. Journal of Urban and Environmental Engineering, 10, 145-154..
  • Cruden, D. M., & Varnes, D. J. (1996). Landslides: investigation and mitigation. Chapter 3-Landslide types and processes. Transportation research board special report, (247).
  • Dai, FC., Lee, CF., Ngai, YY. (2002) Landslide risk assessment and management: an overview. Eng Geol, 64(1):65–87
  • Damm, B., Klose, M. (2015). The landslide database for Germany: closing the gap at national level. Geomorphology, 249:82–93.
  • Díaz, S.R., Cadena, E., Adame, S. et al. (2020). Landslides in Mexico: their occurrence and social impact since 1935. Landslides, 17, 379–394.
  • Dölek, İ. (2020). Afetler ve Afet Yönetimi. Pegem Akademi Yayıncılık, Ankara.
  • Froude, M. J., & Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18, 2161-2181.
  • Gorum, T., Fan, X., van Westen, CJ., Huang, RQ., Xu, Q., Tang, C., Wang, G. (2011) Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology, 133(3–4):152–167
  • Görüm, T. (2006). Coğrafi Bilgi Sistemi ve İstatistiksel Yöntemler Kullanılarak Heyelan Duyarlılık Analizi: Melen Boğazı ve Yakın Çevresi. İstanbul Üniversitesi, Sosyal Bilimler Enstitüsü, (Basılmamış Yüksek Lisans Tezi), İstanbul.
  • Gökçe, O., Özden, Ş., & Demir, A. (2008). Türkiye’de Afetlerin Mekânsal ve İstatistiksel Dağılımı Afet Bilgileri Envanteri. Afet İşleri Genel Müdürlüğü, Afet Etüt ve Hasar Tespit Daire Başkanlığı, Ankara.
  • Guzzetti, F. (2000). Landslide fatalities and evaluation of landslide risk in Italy”. Engineering Geology, 58, 89-107.
  • Guzzetti, F. (2006). Landslide hazard and risk assessment (PhD Thesis). Mathematisch Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms- Universität, University of Bonn, Bonn, Germany.
  • Guzzetti, F., Mondini, A.C., Cardinali, M., Fiorucci, F., Santangelo, M., Chang, K.-T. (2012). Landslide inventory maps: new tools for an old problem. Earth Sci. Rev., 112, 42–66.
  • Guzzetti, F., Reichenbach, P., Cardinali, M., Ardizzone, F., Galli, M. (2003). The impact of landslides in the Umbria region, central Italy. Nat. Hazards Earth Syst. Sci., 3, 469–486.
  • Haque, U., Blum, P., da Silva, P.F. et al. Fatal landslides in Europe. (2016). Landslides, 13, 1545–1554.
  • Haque U, da Silva PF, Devoli G, Pilz J, Zhao B, Khaloua A, Wilopo W, Andersen P, Lu P, Lee J, Yamamoto T, Keellings D, Wu J-H, Glass GE. (2019). The human cost of global warming: deadly landslides and their triggers (1995–2014). Sci Tot Environ, 682:673–684.
  • Hervás, J. (2013). Landslide inventory. In: Bobrowsky, P.T. (Ed.), Encyclopedia of Natural Hazards, Springer, Berlin, pp. 610–611. Kendall, M.G. (1975). Rank Correlation Methods. 4th ed. Charles Griffin, London, U.K.
  • Kirschbaum, D., Adler, R., Adler, D., Peters-Lidard, C., Huffman, G. (2012). Global distribution of extreme precipitation and high-impact landslides in 2010 relative to previous years. J. Hydrometeorol, 13 (5), 1536–1551.
  • Kirschbaum, D., Stanley, T., Zhou, Y.P. (2015). Spatial and temporal analysis of a global landslide catalog. Geomorphology, 249, 4–15.
  • Kirschbaum, DB., Adler, R., Hong, Y., Hill, S., Lerner-Lam, A. (2010). A global landslide catalog for hazard applications: Method, results, and limitations. Nat Hazards, 52(3):561–575.
  • Klose, M., Damm, B., Highland LM. (2015). Databases in geohazard science: an introduction. Geomorphology, 249:1–3.
  • Lin, Q., Wang, Y. (2018). Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016. Landslides, 15, 2357–2372.
  • Mann, H.B. (1945). Non-parametric tests against trend. Econometrica, 13(3), 245–259.
  • Nadim, F., Kjekstad, O., Peduzzi, P., Herold, C., and Jaedicke, C. (2006). Global landslide and avalanche hotspots. Landslides, v. 3, p. 159–173.
  • OFDA/CRED (2019). EM-DAT International Disaster Database. www.em-dat.net. Universite´ Catholique de Louvain, Brussels, Belgium.
  • Özbay, A., Cabalar, A.F. (2015). FEM and LEM stability analyses of the fatal landslides at Çöllolar open-cast lignite mine in Elbistan, Turkey. Landslides, 12, 155–163.
  • Petley, D. (2012). Global patterns of loss of life from landslides. Geology, 40 (10), 927-930.
  • Rahman, M.K., Crawford, T. & Schmidlin, T.W. (2018). Spatio-temporal analysis of road traffic accident fatality in Bangladesh integrating newspaper accounts and gridded population data. Geo Journal, 83, 645–661.
  • Schuster, R.L. (1996). Socia-economic significance of landslides, In: Turner. Schuster (eds) Landslides: Investigation and Mitigation. Transportation Research Board-National Research Council, Special Report, 247, 12-35.
  • Sen, PK. (1968). Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc, 63: 1379–1389.
  • Sepúlveda, S. A. & Petley, D. N. (2015). Regional trends and controlling factors of fatal landslides in Latin America and the Caribbean. Natural Hazards and Earth System Sciences, 15, 1821-1833.
  • Shahid, S. (2011). Trends in extreme rainfall events of Bangladesh. Theor Appl Climatol, 104(3–4):489–499.
  • Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. New York: Chapman and Hall.
  • Spizzichino, D., Margottini, C., Trigila, A., Iadanza, C., Linser, S. (2010). Chapter 9: landslides. In: European Environment Agency (Ed.), Mapping the Impacts of Natural Hazards and Technological Accidents in Europe: An Overview of the Last Decade. EEA Technical Report 13/2010. European Environmental Agency, Copenhagen, pp. 81–93.
  • Taylor, FE., Malamud, BD., Freeborough, K., Demeritt, D. (2015). Enriching Great Britain’s National Landslide Database by searching newspaper archives. Geomorphology, 249:52–68.
  • Van Den Eeckhaut, M., Hervás J., Montanarella, L. (2013). Landslide Databases in Europe: Analysis and Recommendations for Interoperability and Harmonisation. In: Margottini C., Canuti P., Sassa K. (eds) Landslide Science and Practice. Springer, Berlin, Heidelberg.
  • Van Westen, C.J., Ghosh, S., Jaiswal, P., Martha, T.R., Kuriakose, S.L. (2013). From Landslide Inventories to Landslide Risk Assessment; An Attempt to Support Methodological Development in India. In: Margottini C., Canuti P., Sassa K. (eds) Landslide Science and Practice. Springer, Berlin, Heidelberg.
  • Varnes, D. J. (1978). Slope movement types and processes. Special report, 176, 11-33.
  • Wu, Y., Wu, SY., Wen, J., Xu, M., Tan, J. (2016). Changing characteristics of precipitation in China during 1960–2012. Int J Climatol, 36:1387–1402.
  • Yeşilkaya, Y., Tetik, M., & Cengiz, N. (1996). Senirkent Taşkınları, Nedenleri ve Alınmakta Olan Önlemlere İlişkin Rapor. Batı Akdeniz Ormancılık Araştırma Enstitüsü Yayınları, Dergi Serisi, Sayı: 2.
  • Zhang, F., & Huang, X. (2018). Trend and spatiotemporal distribution of fatal landslides triggered by non-seismic effects in China. Landslides, 15 (8), 1663-1674.
  • Zhang, M., Du, S., Wu, Y., Wen, J., Wang, C., Xu, M., Wu, SY. (2017). Spatiotemporal changes in frequency and intensity of high-temperature events in China during 1961-2014. J Geogr Sci, 27: 1027–1043.