Sulak alanlarda potansiyel toksik element (PTE) kaynaklı bölgesel ekolojik risk araştırmalarında kullanılan analitik metotlar

Sulak alan ekosistemleri çok sayıda fauna ve flora türüne yaşam ortamı sunan, aynı zamanda insanların faydalandığı önemli doğal kaynak değerleridir. Son yıllarda artan antropojenik etkiler sulak alanlarda PTE kaynaklı ekolojik bozulmaya ve buralardan çeşitli yollarla faydalanan insanlar üzerinde sağlık risklerine neden olmaktadır. Bu nedenle, sulak alanlarda ekolojik bozulma ve sağlık riski analizleri yapmak için analitik metotlar geliştirilmiştir. Zenginleşme faktörü (Enrichment factor-EF), Kontaminasyon faktörü (Contamination factor-CF), Modifiye kontaminasyon derecesi (Modified contamination degree-mCd), Jeoakümülasyon indeksi (Geoaccumulation index-Igeo) ile elementlerin doğal ve antropojenik kaynakları tespit edilmektedir. Modifiye ekolojik risk indeksi (Modified ecological risk-mER) Modifiye potansiyel ekolojik risk indeksi (Modified potential ecological risk-mPER), Kirlilik yük indeksi (Pollution load index-PLI), Toksik risk indeksi (Toxic risk index-TRI), Modifiye edilmiş risk oranı (Modified hazard quotient-mHQ), Ekolojik kontaminasyon indeksi (Ecological contamination index-ECI) ve Kontaminasyon ağırlık indeksiyle (Contamination severity index-CSI) ekolojik risk değerlendirmesi yapılmaktadır. Kanserojen olmayan sağlık risklerinin tespiti için Tehlike indeksi (Hazard index- HI) ve Tehlike oranı (Hazard quotient-HQ), kanser riski tespiti için Yaşam boyu toplam kanser riski indeksi (Lifetime cancer risk index-LCR) hesaplanmaktadır. PTE’lerin ortak kaynaklarını tanımlamak ve taşınma süreçlerini tespit etmek için çok değişkenli istatistiksel analizler ve Coğrafi Bilgi Sistemleri’ne dayalı mekânsal analizler kullanılmaktadır. Bu çalışmada, yukarıda belirtilen metotların kapsamlı bir değerlendirmesi yapılmıştır.

Analytical methods used in regional ecological risk assessment of potentially toxic elements (PTEs) in wetlands

Wetland ecosystems are important natural resources that provide a habitat for many fauna and flora species and they are highly beneficial for people as well. Increasing anthropogenic effects in recent years cause ecological degradation in wetlands as a result of PTE resulting in health risks for people who benefit from wetlands in various ways. Therefore, analytical methods have been developed for ecological degradation and health risk assessments in wetlands. Enrichment factor (EF), Contamination factor (CF), Modified contamination degree (mCd) and Geoaccumulation index (Igeo) are used to identify natural and anthropogenic sources of elements. Modified ecological risk (mER), Modified potential ecological risk (mPER), Pollution load index (PLI), Toxic risk index (TRI), Modified hazard quotient (mHQ), Ecological contamination index (ECI) and Contamination severity index (CSI) are utilized for ecological risk assessment. Hazard index (HI) and Hazard quotient (HQ) are used to detect non-carcinogenic health risks and Lifetime cancer risk index (LCR) is used to for the detection of cancer risk. Multivariate statistical analyzes and Geographic Information Systems based spatial analyzes are used to identify the common sources of PTEs and to determine their transportation processes. This study presents a comprehensive evaluation of the above-mentioned methods.

___

  • Abrahim, G., & Parker, R. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227-238. https://doi.org/10.1007/s10661-007-9678-2
  • Benson, U. N., Adedapo, E. A., Fred Ahmadu, H. O., Williams, B. A., Udosen, D. E., Ayejuvo, O., & Olejire, A. A. (2018). A new method for assessment of sediment associated contamination risks using multivariate statistical approach. Methodx, 30, 268-276. https://doi.org/10.1016/j.mex.2018.03.005
  • Balık, İ. & Tunca, E. (2015). Sedimentteki metal kirliliğini değerlendiren yöntemler üzerine bir derleme. Türk Denizcilik ve Deniz Bilimleri Dergisi, 1, 37-47. https://dergipark.org.tr/en/download/issue-full-file/40133
  • Brady, J.P., Ayoko, G.A., Martens, W.N., & Goonetilleke, A. (2015). Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environmental Monitoring and Assessment, 187, https://doi.org/10.1007/s10661-015-4563-x
  • Cürebal İ., Efe R., Soykan A., & Sönmez S. (2015). Impacts of anthropogenic factors on land degradation during the anthropocene in Turkey. Journal of Environmental Biology, 36, 51-58. https://pubmed.ncbi.nlm.nih.gov/26591882/
  • Çavuşoğlu K., Gündoğan Y., Arıca Ç.Ş., & Kırındı T. (2007). Mytilus sp (midye), gammarus sp (nehir tırnağı) ve cladophora sp (yeşil alg) örnekleri kullanılarak Kızılırmak nehrindeki ağır metal kirliliğin araştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9, 52-60. http://fbe.balikesir.edu.tr/dergi/20071/BAUFBE2007-1.pdf
  • Eker, Ç. S. (2020). Distinct contamination indices for evaluating potentially toxic element levels in stream sediments: a case study of the Harşit Stream (NE Turkey). Arabian Journal of Geosciences, 13, (22), https://doi.org/1-18. 10.1007/s12517-020-06178-w
  • Eid, E., Shaltout, K., El-Sheikh, M., & Asaeda, T. (2012). Seasonal courses of nutrients and heavy metals in water, sediment and above- and below-ground Typha domingensis biomass in Lake Burullus. Perspectives for phytoremediation. Flora: Morphology, Distribution, Functional Ecology of Plants, 207, 783–94. https://doi.org/10.1016/j.flora.2012.09.003
  • ESRI. (2021). How kriging works, https://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-toolbox/how-kriging- works.htm. Falkenmark, M., Lundqvist, J. & Widstrand, C. (1989). Macro-scale water scarcity requires micro-scale approaches. Natural Resources Forum, 13, 258-267. http://dx.doi.org/10.1111/j.1477-8947.1989.tb00348.x
  • Fural, Ş. (2020). İkizcetepeler baraj gölü çökellerinin (Balıkesir) ekolojik risk analizi. (Tez yayın numarası: 641963) [doktora tezi, Balıkesir Üniversitesi], YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • Fural, Ş., Kükrer, S., & Cürebal, İ. (2020). Geographical information systems based ecological risk analysis of metal accumulation in sediments of İkizcetepeler Dam Lake (Turkey). Ecological Indicators, 119. https://doi.org/10.1016/j.ecolind.2020.106784
  • Fural, Ş., Kükrer, S., Cürebal, İ., & Aykır, D. (2021). Spatial distribution, environmental risk assessment, and source identification of potentially toxic metals in Atikhisar dam, Turkey. Environmental Monitoring and Assessment,193, https://doi.org/10.1007/s10661-021-09062-6
  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control: A sedimentological approach. Water Research, 14, 975-1001. https://doi.org/10.1016/0043-1354(80)90143-8
  • Iqbal, J., Tirmizi SA., & Shah, MH. (2013). Statistical apportionment and risk assessment of selected metals in sediments from Rawal Lake (Pakistan). Environmental Monitoring and Assessment, 185, 729-743. https://doi.org/10.1007/s10661-012-2588-y
  • Kaya, H., Erginal, G., Çakır, Ç., Gazioğlu, C., & Erginal, A. (2017). Ecological risk evaluation of sediment core samples, Lake Tortum (Erzurum, NE Turkey) using environmental indices. International Journal of Environment and Geoinformatics, 4, 227-239. https://doi.org/10.30897/ijegeo.348826
  • Kır, İ., & Tuncay, Y. (2010). Kovada Gölü'nde Yaşayan İstakozlarda (Astacus leptodactylus) Bazı Ağır Metallerin Birikiminin İncelenmesi. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 5, 179-186. https://dergipark.org.tr/tr/pub/sdufeffd/issue/11272/134705
  • Kırıs, E., & Baltas, H. (2020). Assessing pollution levels and health effects of heavy metals in sediments around Cayeli copper mine area, Rize, Turkey. Environmental Forensics, 22,372-384. https://doi.org/10.1080/15275922.2020.1850572
  • Kükrer, S. (2017). Pollution, source, and ecological risk assessment of trace elements in surface sediments of Lake Aktaş, NE Turkey. Human and Ecological Risk Assesment, 7, 1629-1644. https://doi.org/10.1080/10807039.2017.1332953
  • Kükrer, S. (2018). Vertical and Horizontal Distribution, Source İdentification, Ecological and Toxic Risk Assessment of Heavy Metals in Sediments of Lake Aygır, Kars, Turkey. Environmental Forensics, (19), 122-133. https://doi.org/10.1080/15275922.2018.1448905
  • Kükrer, S., Çakır, Ç., Kaya, H., & Erginal, E. A. (2019). Historical record of metals in Lake Küçükçekmece and Lake Terkos (Istanbul, Turkey) based on anthropogenic impacts and ecological risk assessment. Environmental Forensics, 4, 385-401. https://doi.org/10.1080/15275922.2019.1657985
  • Kükrer, S., Erginal, A. E., Şeker, S., & Karabıyıkoğlu, M. (2015). Distribution and environmental risk evaluation of heavy metal in core sediments from Lake Çıldır (NE Turkey). Environ. Monit. Assess, 7, https://doi.org/10.1007/s10661-015-4685-1
  • Laval-Martin, D. (1985). Spectrophotometric method of controlled pheophytinization for the determination of both chlorophylls and pheophytins in plant extracts. Analytical Biochemistry, 149, 121-129. https://doi.org/10.1016/0003-2697(85)90484-1
  • Liu, E., Sjen, J., & Yhang, L. (2010). Assessment of heavy metal contamination in the sediments of Nansihu Lake Catchment, China. Environ. Monit. Assess, 161, 217–27. https://doi.org/10.1007/s10661-008-0739-y
  • Long, E., Field, L., & Mac Donald, D. (1998). Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environmental Toxicology and Chemistry, 17,714-727. https://doi.org/10.1002/etc.5620170428
  • Lorenzen, C. (1971). Chlorophyll-degradation products in sediments of Black Sea. Woods Hole Oceanographic Institution Contribution, 28, 426-428.
  • Luczynskaa, Z., & Kang, M. (2018). Risk assessment of toxic metals in marine sediments from the Arctic Ocean using a modified BCR sequential extraction procedure. Environ. Sci. Health, 53, 278-293. https://doi.org/10.1080/10934529.2017.1397443
  • MacDonald, D., Carr, R., Calder, F., & Long, E. (1996). Development and Evaluation of Sediment Quality Guidelines for Florida Coastal Waters. Ecotoxicology, 5, 253-278. https://doi.org/10.1007/BF00118995
  • MacDonald, D., Ingersoll, C., & Berger, T. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol., 39, 20-31. https://doi.org/10.1007/s002440010075 Müller, G. (1969). Index of geo-accumulation in sediments of the Rhine river. Geochem, J., 2,108 -118.
  • Pejman, A., Bidhendi, N. G., Ardestani, M., Saeedi, M., & Baghvand, A. (2015). A new index for assesing heavy metal contamination in sediments: A cese study. Ecological Indicators, 58, 365-373. https://doi.org/10.1016/j.mex.2018.03.005
  • Rovira, J., Mari, M., Schuhmavher, M., Nadal, M., & Domingo, J. (2011). Monitoring Environmental Pollutants in the Vicinity of a Cement Plant: A Temporal Study. Archives of Environmental Contamination and Toxicology, 60, 372-384. https://doi.org/10.1007/s00244-010-9628-9
  • Sanei H., Outridge M., Oguri, K., Stern G.A., Thamdurp B., Wenzhöfer, F., Wang, F., Glud N.R. (2021). High mercury accumulation in deep‑ocean hadal sediments. Scientifc Reports, | 11:10970. https://doi.org/10.1038/s41598-021-90459-1
  • Salomons, W., & Stigliani, W. (1995). Biogeodynamics of pollutants in soils and sediments. Heidelberg: Springer - Verlag.
  • Schlichting, E., & Blume, H. (1966). Bodenkundliches praktikum. Verlag Paul.
  • Song, J., Liu, Q., & Sheng, Y. (2019). Distribution and risk assessment of trace metals in riverine surface sediments in gold mining area. Environmental Monitoring and Assessment, 191, 1-13. https://doi.org/10.1007/s10661-019-7311-9
  • Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39, 611- 627. https://doi.org/10.1007/s002540050473
  • Taylor, S. R.,McLennan, S. M., 1995. The geochemical Evolution of the Continental Crust. Reviews of Geophysic, 33, 241-265. https://doi.org/10.1029/95RG00262
  • Tokatli, C., Uğurluoğlu, A., Köse, E., Çiçek, A., Arslan, N., Dayioğlu, H., & Emiroğlu, Ö. (2021). Ecological risk assessment of toxic metal contamination in a significant mining basin in Turkey. Environmental Earth Sciences, 80, (17). https://doi.org/10.1007/s12665-020-09333-4
  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffery, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgolnder Meeresunters, 33, 566-575. https://hmr.biomedcentral.com/articles/10.1007/BF02414780
  • Turekian, K., and Wedepohl, K. (1961). Distribution of the Elements in Some Major Units of the Earth's Crust. GSA Bulletin, 72, 175-192. https://pubs.geoscienceworld.org/gsa/gsabulletin/article/72/2/175/5262/Distribution-of-the-Elements-in-Some-Major-Units
  • U.S. Environmental Protection Agency (USEPA). (2005). Guidelines for carcinogen risk assessment. https://www3.usepa.gov/airtoxics/cancer_guidelines_final_3-25-05.pdf
  • U.S Environmental Protection Agency (USEPA). (2009). Risk Değerlendirme Rehberi: Bölüm e. https://www.usepa.gov/risk/risk-assessment-guidance-superfund-rags-part-e.
  • U.S. Environmental Protection Agency (USEPA). (2015). Risk based screening table- generic, summary table. http://www.usepa.gov/risk/riskbased-screening-table-generic-tables.
  • Ustaoğlu, F., & Tepe, Y. (2018). Determination of the sediment quality of Pazarsuyu Stream (Giresun, Turkey) by multivariate statistical methods. Turkish Journal of Agriculture-Food Science and Technology, 6, (3), 304-312. https://doi.org/10.24925/turjaf.v6i3.304-312.1696
  • Ustaoğlu, F., Tepe, Y., & Aydın, H. (2020). Heavy metals in sediments of two nearby streams from Southeastern Black Sea coast: contamination and ecological risk assessment. Environmental Forensics, 2, 145-156. https://doi.org/10.1080/15275922.2020.1728433
  • Ustaoğlu, F., & Islam, M. S. (2020). Potential toxic elements in sediment of some rivers at Giresun, Northeast Turkey: A preliminary assessment for ecotoxicological status and health risk. Ecological indicators, 113, 106237. https://doi.org/10.1016/j.ecolind.2020.106237
  • Ustaoğlu, F. (2021). Ecotoxicological risk assessment and source identification of heavy metals in the surface sediments of Çömlekci stream, Giresun, Turkey. Environmental Forensics, 22, (1-2), 130-142. https://doi.org/10.1080/15275922.2020.1806148
  • Varol, M. (2020). Environmental, ecological and health risks of trace metals in sediments of a large reservoir on the Euphrates River (Turkey). Environmental Research, 187, 109664. https://doi.org/10.1016/j.envres.2020.109664
  • Vrhovnik, P., Šmuc, N. R., Dolenec, T., Serafimovski, T., Dolenec, M. (2013). An evaluation of trace metal distribution and environmental risk in sediments from the Lake Kalimanci (FYR Macedonia). Environmental Earth Sciences, 70,(2), 761–775. https://doi.org/10.1007/s12665-012-2166-1 Walkley, A., & Black, I. (1934). An examination of the Degthareff method far determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 27, 29-38. http://dx.doi.org/10.1097/00010694-193401000-00003
  • Wang, X., Zhao, L., Xu, H., & Zhang X. (2018). Spatial and seasonal characteristics of dissolved heavy metals in the surface seawater of the Yellow River Estuary, China. Marine Pollution Bulletin, 137, 465 - 473. https://doi.org/ 10.1016/j.marpolbul.2018.10.052
  • Wang, Y. B., Liu, W. C., & Wang, W. S. (2015). Characterization of heavy-metal-contaminated sediment by using un- supervised multivariate techniques and health risk assessment. Ecotoxicology and Environmental Safety, 113, 469-476. https://doi.org/10.1016/j.ecoenv.2014.12.036
  • Wei, J., Cen K. (2020). Assessment of human health risk based on characteristics of potential toxic elements (PTEs) contents in foods sold in Beijing, China, Science of The Total Environment, 703, https://doi.org/10.1016/j.scitotenv.2019.134747
  • Yılmaz, M., Teber Ç., Akkan T., Er, Ç.Ç., Kariptaş E., Çiftçi H. (2016). Determination of Haevy Metal Levels in Different Tissues of Tench Tinca tinca L.,1758 from Sıddıklı Küçükboğaz Dam Lake, Kırşehir Turkey. Fresenius Environmental Bulletin, 25, 1972-1977. https://www.researchgate.net/profile/Tamer-Akkan/publication/304396698
  • Yuan, Z., Taoran, S., Yan, Z., & Tao, Y. (2014). Spatial distribution and risk assessment of heavy metals in sediments from a hypertrophic plateau lake Dianchi, China. Environmental Monitoring and Assesment, 186, 1219-1234. https://link.springer.com/article/10.1007/s10661-013-3451-5
  • Zhang, G., Bai, J., Zhao, Q. (2016). Heavy metals in wetland soils along a wetland-forming chronose quence in the Yellow River Delta of China: Levels, sources and toxic risks. Ecological Indicators 69, 331–339. https://doi.org/ 10.1016/j.ecolind.2016.04.042
  • Zhang, L., Ye, X., Feng, H., Jing, Y., Ouyang, T., & Yu, X. (2007). Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China. Marine Pollution Bulletin,54, 974-982. https://europepmc.org/article/med/17433373
  • Zhou, Q., Yang, N., Li, Y., Ren, B., Ding, X., Bian, H. (2020). Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Global Ecology and Conservation, 22, 1-11. https://doi.org/10.1016/j.gecco.2020.e00925