Marmara Denizi havzasının hidroklimatolojik dinamiklerinin belirlenmesi

Bu çalışmada, Marmara Denizi havzasındaki yağış, akış, buharlaşma, akış katsayısı ve su dengesi arasındaki ilişkiler incelenmiş ve dağılışları ele alınmıştır. MGM’den 34 yağış ile 14 buharlaşma istasyonu ve DSİ’den 77 Akarsu Gözlem İstasyonunun (AGİ) kullanılmıştır. Öncelikle her bir AGİ’nin  su toplama havzası çıkarılmıştır. Burada verinin homojenliğinin bozulmaması ve insan etkisini ortadan kaldırmak için baraj altında bulunan istasyonlar analizlere dahil edilmemiştir. Daha sonra yağış ve buharlaşma istasyonları Thiessen poligon yöntemi kullanılarak noktasal veriden alansal veriye dönüştürülmüştür. Buna göre 1982-2006 yılları arasını kapsayan zaman dilimi içerisinde her bir AGİ havzası için alansal olarak dağıtılmış yağış, akış ve buharlaşma değerleri elde edilmiş ve bunlardan akış katsayısı ve su dengesi hesaplamaları yapılmış ve haritaları üretilmiştir. Swath profilleri kullanılarak elde edilen veri seti ile topografya arasındaki ilişkilere bakılmış ve buharlaşma ile istatisksel olarak anlamlı ilişkiler görülmüştür. Marmara Denizi havzasındaki tüm istasyonlar incelendiğinde yağış ve akış arasında istatiksel olarak anlamlı ve doğrusal ilişkiler elde edilmiştir. Bununla birlikte korelasyon matrisi ve saçılım diyagramı incelendiğinde akış, buharlaşma ve akış katsayısı ile su dengesi arasında istatistiksel açıdan anlamlı negatif doğrusal ilişkiler göze çarpmaktadır. Marmara Denizi havzasında su dengesi göreceli olarak Biga yarımadasında en fazla olmak üzere negatif değerler vermektedir. Bu bağlamda havzanın hidroklimatolojik dinamiklerinin oluşmasında en kuvvetli denetçinin buharlaşma olduğu görülmektedir. 

Identifying of hydroclimatological dynamics in Marmara Sea Basin

In this study, the relationship among rainfall, runoff, evaporation, runoff coefficient and water balance were investigated and patterns of those were discussed. 14 evaporation stations and 34 precipitation from MGM and 77 stream gauging stations (AGI) from DSİ were used. First of all, the drainage basins of each AGI stations were extracted. The stations which are under the dam did not consider in the analyses so as not to break the homogeneity of the data and to avoid human influence. Afterwards, rainfall and evaporations stations were transformed into spatial data from points via Thiessen polygon method. Accordingly spatial distributed values of rainfall, runoff and evaporation were obtained and runoff coefficient and water balance were calculated and maps were drawn based on those values. The relationship was investigated based on topography and obtained dataset by using Swath profile and found significant relation between topography and evaporation. Statistically significant and linear relationships between rainfall and runoff were obtained when all the stations were examined in the Marmara Sea basin. Statistically significant negative linear relationships among runoff, evaporation and runoff coefficient and water balance attract the attention when the correlation matrix and scatter diagram are examined. However, water balance in the basin gives negative values, which is relatively high in the Biga peninsula. In this context, it seems that the most powerful controller in the formation of the hydroclimatolocigal dynamics of the basin is evaporation.

___

  • Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9), D05109.
  • Beven, K. J. (2011). Rainfall-runoff modelling: the primer. John Wiley & Sons.
  • Blomqvist, N. and Whipp, D. (2016). Comparing global-scale topographic and climatic metrics to long-term erosion rates using ArcSwath, an efficient new ArcGIS tool for swath profile analysis. In EGU General Assembly Conference Abstracts (Vol. 18, p. 6447).
  • Compagnucci R, Da Cunha L, Hanaki K, Howe C, Mailu G, Shiklomanov I, Stakhiv E, (2001). Hydrology and water resources. In Climate Change 2001: Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Becker A, Zhang J (eds). Cambridge University Press: Cambridge; 191–233.
  • Critchley, W., Siegert, K. and Chapman, C. (1991). Water Harvesting: A Manual for the Design and Construction of Water Harvesting Schemes for Plant Production, Food and Agriculture Organization of the United Nations, RomeAGL. MISC/17/91.
  • Demircan, M., Gürkan, H., Eskioğlu, O., Arabacı, H., and Coşkun, M. (2017). Climate Change Projections for Turkey: Three Models and Two Scenarios. Turkish Journal Of Water Science & Management, 1 (1), 22-43.
  • Elbaşı, E. (2015). Marmara Denizi Akarsu Havzalarının Morfometrik Analizi. İstanbul Üniversitesi, Sosyal Bilimler Enstitüsü.İstanbul.
  • Ertek, A. (2011). Importance of pan evaporation for irrigation scheduling and proper use of crop-pan coefficient (Kcp), crop coefficient (Kc) and pan coefficient (Kp). African Journal of Agricultural Research, 6(32), 6706-6718.
  • McMahon, T. A., Peel, M. C., Lowe, L., Srikanthan, R., and McVicar, T. R. (2013). Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis. Hydrology and Earth System Sciences, 17(4), 1331.
  • Müller Schmied, H., Adam, L., Eisner, S., Fink, G., Flörke, M., Kim, H., and Song, Q. (2016). Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use. Hydrology and Earth System Sciences, 20(7), 2877-2898.
  • Ozdemir H. and Elbaşı, E. (2015). Benchmarking Land Use Change Impacts on Direct Runoff in Ungauged Urban Watersheds. Physics and Chemistry of the Earth, vol.79, pp.100-107.
  • Öztürk, M. Z. (2010). Uludağ (Zirve) ve Bursa Meteoroloji İstasyonlarının Karşılaştırmalı İklimi. Türk Coğrafya Dergisi, (55), 13-24.
  • Özturk, M. Z., Çetinkaya, G., ve Aydın, S. (2017). Köppen-Geiger İklim Sınıflandırmasına Göre Türkiye’nin İklim Tipleri. Coğrafya Dergisi, (35), 17-27.
  • Ozturk, T., Ceber, Z. P., Türkeş, M., and Kurnaz, M. L. (2015). Projections of climate change in the Mediterranean Basin by using downscaled global climate model outputs. International Journal of Climatology, 35(14), 4276-4292.
  • Peel, M. C., Finlayson, B. L. and McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and earth system sciences discussions, 4(2), 439-473.
  • Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J. and Midgley, B. M. (2013). IPCC, (2013): climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Şimşek, O., Mermer, A., Yıldız, H., Özaydın, K. A. ve Peşkircioğlu, M. (2013). Referans Toplam Buharlaşma (ETo) Normal Haritaları. 6th Atmospheric Science Symposium, 24-26 April 2013, İstanbul Technical University, Turkey.
  • Şen, Ö. L. (2013). A holistic view of climate change and its impacts in Turkey. Report. 5 Istanbul Policy Centre, Sabanci University, Istanbul.
  • Turp, M. T., Öztürk, T., Türkeş, M. ve Kurnaz, M. L. (2014). RegCM4. 3.5 bölgesel iklim modelini kullanarak Türkiye ve çevresi bölgelerin yakın gelecekteki hava sıcaklığı ve yağış klimatolojileri için öngörülen değişikliklerin incelenmesi. Ege Coğrafya Dergisi, 23(1).
  • Tatli, H. (2014). Statistical complexity in daily precipitation of NCEP/NCAR reanalys is over the Mediterranean Basin. International Journal of Climatology, 34(1), 155-161.
  • Türkeş, Murat. (1996). Spatial and temporal analysis of annual rainfall variations in Turkey. International Journal of Climatology, 16(9), 1057-1076.
  • Vörösmarty, C. J., Green, P., Salisbury, J., and Lammers, R. B. (2000). Global water resources: vulnerability from climate change and population growth. Science, 289 (5477), 284-288.
  • Wilson, E. M. (1990). Engineering Hydrology. Fourth Edition, Macmillan, London.
  • Yang, Y. and Tian, F. (2009). Abrupt change of runoff and its major driving factors in Haihe River Catchment, China. Journal of Hydrology, 374(3-4), 373-383.