Karaciğer hücresi nakli, karaciğer yetmezliğinde ortotopik hücre nakline güçlü bir alternatiftir. Son yıllarda, kök hücrelerin doğalarının, kinetiklerinin ve yenilenen karaciğer bölgesinde etkili bir şekilde toplanmalarının sağlanmasının anlaşılması için hatırı sayılır gayretler sarf edilmektedir.  Mesenkimal kök hücreler karaciğer yenilenme sürecini modüle eden ümit verici hücre kaynaklarından bir tanesidir. Bu çalışma, mezenkimal kök hücrelerin sıçanlarda toll benzeri reseptör (TLR) ifadesini değiştirmek suretiyle karaciğer immün yanıtını nasıl etkileyebildiklerini ve karaciğer yenilenmesi esnasında yenilenme potansiyelini arttırabildiklerini belirlemek için gerçekleştirilmiştir. Normal ve karaciğerleri kısmen çıkarılmış sıçanlar, sıçan kemik iliğinden elde edilip çoğaltılan mesenkimal kök hücreler ile muamele edilmişlerdir. Mesenkimal kök hücrelerin toplanması Eş Zamanlı Polimeraz Zincir Reaksiyonu (RT-PCR), Floresan Aktivite Hücre Ayırma (FACS), ve Immunfloresan Boyama (IFS) ile doğrulanmıştır. Sham ve karaciğeri kısmen alınmış sıçan grupları arasındaki farklılığın istatistiki analizinde Student's t-testi kullanılmıştır. Elde edilen sonuçlar mezenkimal kök hücrelerinde çeşitli TLR’lerin ifade edildiklerini ve bu hücrelerin yenilenme esnasında toplanmalarının meydana gelen hasarın zamanlamasına bağlı olduğunu göstermiştir. Normal sıçanların kemik iliğinden izole edilen mezenkimal kök hücreler hasarlı karaciğerde enjeksiyon sonrası 3. günde görülmüşlerdir. Hasarsız hayvanların karaciğer kesitlerinde işaretli bir mezenkimal kök hücre görülmemiştir. Mezenkimal kök hücre uygulaması TLR2, 3 ve 9'un ifadesinin anlamlı bir şekilde değiştirirken yenilenen karaciğere göç etme yeteneklerini devam ettirmişlerdir. Sonuçlar, karaciğer yenilenmesi esnasında mezenkimal kök hücre uygulamasının, hücrelerin uygulandığı hasarsız karaciğer parçalarında TLR’lerin ifadelerini değiştirme yoluyla immün yanıtı modüle ettiğini ortaya koymaktadır. TLR ifadesindeki bu değişim kısmı hepatoktemi sonrası yenilenme sürecine katkı sağlayabilir niteliktedir.

ADMINISTRATION OF BONE MARROW DERIVED MESENCHYMAL STEM CELLS MODULATE TLR EXPRESSION DURING LIVER REGENERATION

Liver cell transplantation is a powerful alternative to orthotopic cell transplantation in the treatment of liver failures. Recently, considerable effort is being channeled to understand the nature and kinetics of directing stem cells to effectively accumulate at the regenerating liver site. Mesenchymal stem cells are one of the promising cell sources modulating liver regeneration process. Present  was designed to study how mesenchymal stem cells might modulate liver immune behaviors by changing Toll-like receptor (TLR) expression and increase regenerative potential during liver regeneration in rats. Normal and partially hepatectomized rats were treated with mesenchymal stem cells isolated and expanded from rat bone marrows. Accumulation of mesenchymal stem cells was confirmed by Real Time-Polymerase Chain Reaction  (RT-PCR), Fluorescence-Activated Cell Sorting  (FACS), and Immunofluorescence Staining (IFS). Student's t-test analysis was used to evaluate the significance of differences between sham and partially hepatectomized rat groups. Our results showed that mesenchymal stem cells expressed several TLRs, and their accumulation during regeneration was depended on the timing of injury. Mesenchymal stem cells isolated from bone marrow of normal rats were observed at the injured liver 3 days after the injection. There were no labeled mesenchymal stem cells in the liver sections of the uninjured animals. Mesenchymal stem cell administration significantly altered the expression of TLR2, 3 and 9 while retaining their migration potential to regenerating liver. Our findings implicated that mesenchymal stem cell administration during liver regeneration modulate the immune response through changing the expression of the TLRs in the remaining liver parts into which the cells are recruited or infused. This alteration may contribute to the regeneration process following partial hepatectomy.

___

  • Aggrawal, S. & Pitteger, M.F. 2005. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4): 1815-1822.
  • Agnès, F., Shamoon, B., Dina, C., Rosnet, O., Birnbaum, D. & Galibert, F. 1994. Genomic structure of the downstream part of the human FLT3 gene: exon/intron structure conservation among genes encoding receptor tyrosine kinases (RTK) of subclass III. Gene, 145(2): 283-288.
  • Akira, S., Uematsu, S. & Takeuchi, O. 2006. Pathogen recognition and innate immunity. Cell, 124: 783-801.
  • Alison, M. 1998. Liver stem cells: a two compartment system. Current Opinion in Cell Biology, 10(6): 710-715.
  • Arancibia, S.A., Beltrán, C.J., Aguirre, I.M., Silva, P., Peralta, A.L., Malinarich, F. & Hermoso, M.A. 2007. Toll-like receptors are key participants in innate immune responses. Biological Research, 40: 97-112.
  • Aydin, I.T., Dalgic, A., Konu, O. & Akcali, K.C. 2007. Cloning and expression profile of Flt3 gene during progenitor cell-dependent liver regeneration. Journal of Gastroenterology and Hepatology, 22(12): 2181-2188.
  • Bartholomew, A., Sturgeon, C., Siatskas, M., Ferrer, K., McIntosh, K., Patil, S. Hardy, W., Devine, S., Ucker, D., Deans, R., Moseley, A. & Hoffman R. 2002. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental Hematology, 30(1): 42-8.
  • Bussolati, B., Tetta, C. & Camussi, G. 2008. Contribution of stem cells to kidney repair. American Journal of Nephrology, 28(5): 813-822.
  • Campbell, J.S., Riehle, K.J., Brooling, J.T., Bauer, R.L., Mitchell, C. & Fausto, N. 2006. Proinflammatory cytokine production in liver regeneration is Myd88-dependent, but independent of Cd14, Tlr2, and Tlr4. The Journal of Immunology, 176(4): 2522-2528.
  • Cornell, R.P. 1985. Gut-derived endotoxin elicits hepatotrophic factor secretion for liver regeneration. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 249(5): R551-R562.
  • Cornell, R.P., Liljequist, B.L. & Bartizal, K.F. 1990. Depressed liver regeneration after partial hepatectomy of germ-free, athymic and lipopolysaccharide-resistant mice. Hepatology, 11: 916-922.
  • da Silva Meirelles, L., Caplan, A.I. & Nardi, N.B. 2008. Stem Cells In search of the in vivo identity of mesenchymal stem cells. Stem Cells, 26(9): 2287-2299.
  • Fausto, N., Campbell, J.S. & Riehle, K.J. 2006. Liver regeneration. Hepatology, 43: 45-53.
  • Friedenstein, A.J., Chailakhyan, R.K. & Latisinik, N.V. 1970. Cell Tissue Kinet The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell and Tissue Kinetics, 3(4): 393-403.
  • Gursel, M., Gursel, I., Mostowski, H.S. & Klinman, D.M. 2006. CXCL16 influences the nature and specificity of CpG-induced immune activation. The Journal of Immunology, 177: 1575- 80.
  • Higgins, G.M. & Anderson, R.M. 1931. Experimental pathology of the liver. I. Restoration of the white rats following partial surgical removal. Archives Pathology, 12: 186-202.
  • Hofstetter, C.P., Schwarz, E.J., Hess, D., Widenfalk, J., El Manira, A., Prockop, D.J. & Olson, L. 2002. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proceedings of the National Academy of Sciences of the United States of America, 99: 2199-04.
  • Horwitz, E.M., Prockop, D.J., Fitzpatrick, L.A., Koo, W.W., Gordon, P.L., Neel, M., Sussman, M., Orchard, P., Marx, J.C. & Pyeritz, R.E. 1999. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nature Medicine, 5(3): 309-13.
  • Hritz, I., Velayudham, A., Dolganiuc, A., Kodys, K., Mandrekar, P., Kurt‐Jones, E. & Szabo, G. 2008. Bone marrow–derived immune cells mediate sensitization to liver injury in a myeloid differentiation factor 88–dependent fashion. Hepatology, 48(4): 1342-1347.
  • Hubert, F.-X., Voisine, C., Louvet, C., Heslan, J.-M., Ouabed, A., Heslan, M. & Josien, R. 2006. Differential pattern recognition receptor expression but stereotyped responsiveness in rat spleen dendritic cell subsets. The Journal of Immunology, 177: 1007-1016.
  • Inoue, S., Popp, F.C., Koehl, G.E., Piso, P., Schlitt, H.J., Geissler, E.K. & Dahlke, M.H. 2006. Immunomodulatory Effects of Mesenchymal Stem Cells in a Rat Organ Transplant Model. Transplantation, 81:1589-95.
  • Koç, O.N., Gerson, S.L., Cooper, B.W., Dyhouse, S.M., Haynesworth, S.E., Caplan, A.I. & Lazarus, H.M. 2000. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. Journal of Clinical Oncology, 18(2): 307-307.
  • Kopen, G.C., Prockop, D.J. & Phinney, D.G. 1999. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proceedings of the National Academy of Sciences of the United States of America, 96: 10711-10716.
  • Kumagai, Y., Takeuchi, O. & Akira, S. 2008. Pathogen recognition by innate receptors. Journal of Infection and Chemotherapy, 14(2): 86-92.
  • Kuo, T.K., Hung, S.P., Chuang, C.H., Chen, C.T., Shih, Y.R.V., Fang, S.C.Y., Yang, V.W. & Lee, O.K. 2008. Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology, 134(7): 2111-2121.
  • Lee, R.H., Kim, B., Choi, I., Kim, H., Choi, H.S., Suh, K., Bae, Y.C. & Jung, J.S. 2004. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cellular Physiology and Biochemistry, 14(4-6): 311-324.
  • Mackay, A., Beck, S., Jaiswal, R., Douglas, R., Mosca, J., Moorman, M., Simonetti, D., Craig, S. & Marshak, D. 1999. Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411): 143-147.
  • Mangi, A.A., Noiseux, N., Kong, D., He, H., Rezvani, M., Ingwall, J.S. & Dzau, V.J. 2003. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nature Medicine, 9: 1195-1201.
  • Matty, M.A. 2008. Treatment of acute lung injury: Clinical and experimental studies. Proceedings of the American Thoracic Society, 5(3): 297-299.
  • Minguell, J.J., Erices, A. & Conget, P. 2001. Mesenchymal stem cells. Experimental Biology and Medicine, 226(6): 507-520.
  • Najimi, M. & Sokal, E. 2005. Liver cell transplant. Minevra Pediatrica, 57: 243-57.
  • Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S.M., Li, B. Pickel, J., McKay, R., Nadal-Ginard, B., Bodine, D.M., Leri, A. & Anversa P. 2001. Bone marrow cells regenerate infarcted myocardium. Nature, 410(6829): 701-705.
  • Pevsner-Fischer, M., Morad, V., Cohen-Sfady, M., Rousso-Noori, L., Zanin-Zhorov, A., Cohen, S., Cohen, I.R. & Zipori, D. 2007. Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood, 109: 1422-32.
  • Petite, H., Viateau, V., Bensaid, W., Meunier, A., de Pollak, C., Bourguignon, M., Oudina, K., Sedel, L. & Guillemin, G. 2000. Tissue-engineered bone regeneration. Nature Biotechnology, 18(9): 959-63.
  • Phillippe, A.L., Compard, D., Smets, F., Najimi, M. & Sokal E.M. 2008. Stem cells for liver tissue repair: Current knowledge and perspectives. World Journal of Gastroenterology, 14: 864-75.
  • Popp, F.C., Slowik, P., Eggenhofer, E., Renner, P., Lang, S.A., Stoeltzing, O., Geissler, E.K., Piso, P., Schlitt, H.J. & Dahlke, M.H. 2007. No contribution of multipotent mesenchymal stromal cells to liver regeneration in a rat model of prolonged hepatic injury. Stem Cells, 25(3): 639-645.
  • Rasmusson, I. 2006. Immune modulation by mesenchymal stem cells. Experimental cell research, 312(12): 2169-79.
  • Seki, E., Tsutsui, H., Iimuro, Y., Naka, T., Son, G., Akira, S., Kishimoto, T., Nakanishi, K. & Fujimoto, J. 2005. Contribution of Toll‐like receptor/myeloid differentiation factor 88 signaling to murine liver regeneration. Hepatology, 41(3): 443-450.
  • Shiratori, Y., Hongo, S., Hikiba, Y., Ohmura, K., Nagura, T., Okano, K.i., Kamii, K., Tanaka, T., Komatsu, Y. & Ochiai, T. 1996. Role of macrophages in regeneration of liver. Digestive Diseases and Sciences, 41(10): 1939-1946.
  • Stagg, J. 2006. Immune regulation by mesenchymal stem cells: two sides to the coin. Tissue Antigens, 69: 1-9.
  • Starzl, T.E., Marchioro, T.L., Von Kaulla, K.N., Hermann, G., Brittain, R.S. & Waddell, W.R. 1963. Homotransplantation of the liver in humans. Surgery, Gynecology & Obstetrics, 117: 659-676.
  • Stéphenne, X., Najimi, M., Sibille, C., Nassogne, M.C., Smets, F. & Sokal, E.M. 2006. Sustained engraftment and tissue enzyme activity after liver cell transplantation for argininosuccinate lyase deficiency. Gastroenterology, 130: 1317-1323.
  • Takeshita, F., Gursel. I., Ishii, K.J., Suzuki, K., Gursel, M. & Klinman, D.M. 2004. Signal transduction pathways mediated by the interaction of CpG DNA with Toll-like receptor 9. In Seminars in Immunology, 16(1):17-22.
  • Tokcaer-Keskin, Z., Akar, A.R., Ayaloglu-Butun, F., Terzioglu-Kara, E., Durdu, S., Ozyurda, U., Uğur, M. & Akcali, K.C. 2009. Timing of induction of cardiomyocyte differentiation for in vitro cultured mesenchymal stem cells: a perspective for emergencies. Canadian Journal of Physiology and Pharmacology, 87(2):143-50.
  • Tokcaer-Keskin, Z., Dikmen, Z.G., Ayaloglu-Butun, F., Gultekin, S., Gryaznov, S.M. & Akcali, K.C. 2010. The Effect of Telomerase Template Antagonist GRN163L on Bone-Marrow-Derived Rat Mesenchymal Stem Cells is Reversible and Associated with Altered Expression of Cyclin d1, cdk4 and cdk6. Stem Cell Reviews and Reports, 6(2): 224-33.
  • Tomchuck, S.L., Zwezdaryk, K.J., Coffelt, S.B., Waterman, R.S., Danka, E.S. & Scandurro, A.B. 2008. Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells, 26: 99-107.
  • Verfaillie, C.M., Pera, M.F. & Lansdorp, P.M. 2002. Stem cells: hype and reality. Hematology / the Education Program of the American Society of Hematology: 369-391.
  • Watanabe, A., Hashmi, A., Gomes, D.A., Town, T., Badou, A., Flavell, R.A. & Mehal, W.Z. 2007. Apoptotic hepatocyte DNA inhibits hepatic stellate cell chemotaxis via toll‐like receptor 9. Hepatology, 46(5): 1509-1518.
  • Zhao, Q., Ren, H., Zhu, D. & Han, Z. 2008. Stem/progenitor cells in liver injury repair and regeneration. Biology of the Cell, 101(10): 557-571.