Farklı bakteri Uygulamalarının Kaya Fosfatının Çözünürlüğü Üzerine Etkisi

Bu çalışmada, iki farklı kaynaktan sağlanan fosfat kayasının çözünürlüğü üzerine Azospirillum brasilense SP-245, Bacillus subtilis OSU-142, Bacillus megaterium M3, Raoultella terrigena, Burkholderia cepacia BA-7 fosfor çözücü bakterilerin çözelti ortamındaki etkisi araştırılmıştır. Laboratuvar koşullarında yürütülen denemede uygulamaları takiben deneme süresince 3 örnekleme (10., 20. ve 30. gün) yapılarak, elektriksel iletkenlik (EC) ve pH değerleri ile suda çözünebilir kalsiyum ve fosfor miktarları ölçülmüştür. Bakteri uygulamaları her iki fosforfor kaynağının kullanıldığı çözelti pH'sında azalışa neden olurken, elektriksel iletkenlik, fosfor ve Ca içeriğinde artışa neden olmuştur. En düşük pH değeri BA-7 uygulamasından elde edilirken, en yüksek P, Ca, çözünebilir tuz konsantrasyonu en yüksek asit ve alkalin fosfataz enzim aktivitesi ve organik asit salgılama kapasitesine sahip B. megaterium M3 uygulamasının 30. gün inkübasyonundan elde edilmiştir.

Effects of Different Bacteria Application on Solubility of Rock Phosphate

In the present study, the capacity of phosphate solubilizing bacterial strain, Azospirillum brasilense SP-245, Bacillus subtilis OSU-142, Bacillus megaterium M3, Raoultella terrigena, Burkholderia cepacia BA-7 have been tested solution culture containing two different rock phosphate sources. Experiment was carried out under laboratory conditions during experiment period 3 times sample was collected (10th, 20th, and 30th day). The phosphorus solubilizing bacteria inoculation decreased solution pH and increased electrical conductivity, and Ca and P concentrations in solution culture of both P source. While the largest pH decrease was found with B. cepacia BA-7, the highest EC values, Ca and P concentrations were found applications of B. megaterium M3 which has the highest acid -alkaline phosphatase enzyme activities and organic acid compound when compared to control during the 30th day of the experiment.

___

Akgul D S, Mirik M (2008). Biocontrol of Phytophthora capsici on pepper plants by Bacillus megaterium strains. J. Plant Pathology 90: 29–34.

Barea J M, Jose Pozo M, Rosario Azcon, Azcon–Aguilar C (2005). Microbial co–operation in the rhizosphere, J. Exper. Botany 56: 1761–1778.

Çakmakçı R, Dönmez F, Aydın A Şahin F (2006). Growth promotion of plants by plant growth–promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem 38: 1482–1487.

Çakmakçı R, Erat M, Oral B, Erdoğan U Sahin F (2009). Enzyme activities and growth promotion of spinach by indole 3 acetic acid producing rhizobacteria. J. Hort. Sci. Biotech 84: 375–380.

Demiralay İ, (1993). Toprak Fiziksel Analizleri. A.Ü. Ziraat Fak. Yayınları No:143, Erzurum.

Deubel A, Gransee A. Merbach,W (2000). Transformation of Organic Rhizodeposits by Rhizoplane Bacteria and its Influence on the Availability of Tertiary Calcium Phospate. J. Plant Nutr. Soil Sci 163: 387–392.

Eşitken A, Karlıdağ H, Ercişli S, Turan M, Şahin F (2003). The effect of spraying a growth promoting bacterium on the yield, growth and nutrient element composition of leaves of apricot (Prunus armeniaca L. cv. Hacihaliloglu), Aus. J. Agric. Re. 54: 377–380.

Eşitken A, Pırlak L, Turan M, Şahin F (2006). Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci. Hortic 110: 324–327.

Goldstein A H (1986). Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am. J. Alter. Agric 1: 51–57.

Goldstein A H (1994). Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram–negative bacteria. In: Torriani–Gorini A, Yagil E, Silver, S, editors. Phosphate in Microorganisms: Cellular and Molecular Biology. Washington, DC: ASM Press, 197–203.

Güneş A, Ataoğlu N, Turan M, Eşitken A, Ketterings Q M (2009). Effects of phosphatesolubilizing microorganisms on strawberry yield and nutrient concentrations. J. Plant Nutr. Soil Sci 173: 385–392.

Halder A K, Chakrabartty P K (1993). Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol 38: 325–30.

Hilda R, Fraga R (2000). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech. Adven 17: 319–359.

Jones D L (1998). Organic acids in the rhizosphere: A critical review. Plant Soil 205: 25–44.

Karlıdağ H, Eşitken A, Turan M, Şahin F (2007). Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci. Hort 114: 16–20.

Kotan R, Şahin F (2002). Bitki hastalıkları ile biyolojik mücadelede bakteriyel organizmaların kullanılması. Ata.Üniv. Ziraat Fak. Der. 31: 111–119.

Kucey R M N (1983). Phosphate solubilizing bacteria and fungi in various cultivated and virgin Alberta Soil. Can. J. Soil Sci 63: 671–678.

Kucey R M N, Janzen H H, Leggett M E (1989). Microbially mediated increases in plant–available phosphorus. Adv. Agron 42: 199–228.

Macklon A E S, Grayston S J, Shand C A, Sim A, Sellars S, Ord B G (1997). Uptake and transport of phosphorus by Agrostis capillaris seedlings from rapidly hydrolysed organic sources extracted from P32–labelled bacterial cultures. Plant Soil 190: 163–167.

Massimiliano F, Laura S, Federico F, Nikolay V (1999). Application of encapsulated Peniculium variahle P16 in solubilization of rock phosphate. Bioresource Techn 73: 157–162.

Mclean E O (1982). Soil pH and Lime Requirement. Methods of Soil Analysis Part2. Chemical and Microbiological Properties Second Edition. Agronamy. No: 9 Part 2 . Edition p: 199–224.

Mertens D (2005). AOAC Official Method 975.03. Metal in Plants and Pet Foods. Official Methods of Analysis, 18th edn. Horwitz, W., and G.W. Latimer, (Eds). Chapter 3, pp 3–4, AOAC–International Suite 500, 481. North Frederick Avenue, Gaitherburg, Maryland 20877–2417, USA.

Nahas E (1996). Factors determining rock phosphate solubilization by microorganisms İsolated from soil. World J. Microbiol. Biotech 12: 567–572.

Nahas E (2007). Phosphate solubilising microorganisms: Effect of carbon, nitrogen and phosphorus sources. In: Valazquez E, Rodriguez–Barrueco C (eds) First international meeting on microbial phosphate solubilization. Developments in Plant Soil Sci 102: 111–115.

Narsian V, Patel H H (2000). Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biol. Biochem 32: 559–565.

Orhan E, Eşitken A, Ercişli S, Turan M, Şahin F (2006). Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci. Hortic 111: 38–43.

Pant H K, Warman P R (2000). Enzymatic hydrolysis of soil organic phosphorus by immobilized phosphatases. Biol. Fertility Soils 30: 306–311.

Pırlak L, Turan M, Şahin F, Eşitken A (2007). Floral and foliar application of plant growth promoting rhizobacteria (PGPR) to apples increases yield, growth, and nutrient element contents of leaves. J. Sustain. Agric 30: 145–155.

Reyes I, Bernier L, Antoun H (2002). Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum. Microbial Ecology 44: 39–48.

Richardson A E, George T S, Hens M, Simpson R J (2005). Utilization of soil organic phosphorus by higher plants. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CABI, Wallingford, UK, 165–184.

Rodriguez C E A, Gonzales A G, Lopez J R, Ciacco C A D, Pacheco B J C, Parada J L (1996). Response of field-grown wheat to inoculation with Azospirillum brasilense and Bacillus polymyxa in the semiarid region of Argentina. Soil Fertility 5: 800–805.

Rodriguez H, Fraga R (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech. Advan 17: 319–339.

Seshadri S, Signacimuthu C, Lakshminarasimhan C (2004). Effect of nitrogen and carbon sources on the inorganic phosphate solubilization by different Aspergillus niger strains. Chem. Eng. Com 191: 1043–1052.

Speir T W, Cowling J C (1991). Phosphatse activities of pasture plants and soils: relationship with plant productivity and P fertility indices. Biol. Fertil. Soils 12: 189–194.

SPSS (2004). SPSS 13.0 for Windows Evaluation version. (SPSS Inc., Illinois, USA).

Şahin F, Çakmakçı R, Kantar F (2004). Sugar beet and barley yields in relation to inoculation N2–fixing and phosphate solubilizing bacteria. Plant Soil 265: 123–129.

Tabatabai M A (1982). Methods of Soil Analysis Part 2.Chemical and Microbiological Properties. Chapter 43 Soil Enzymes. Second Edition. American Society of Agronomy, Soil Science Society of America–Madison, Visconsin, USA, 903–947.

Tarafdar J C, Rao A V, Bala K (1988). Production of phosphatases by fungi isolated from desert soils. Folia Microbiol 33: 453–457.

Turan M, Ataoglu N, Şahin F (2006). Evaluation of the capacity of phosphate solubilizing bacteria and fungion different forms of phosphorus in liquid culture. J. Sustain. Agric 28: 99–108.

Turan M, Ataoglu N, Şahin F (2007). Effects of Bacillus FS–3 on Growth of Tomato (Lycopersicum esculentum L.) Plants and Availability of Phosphorus in Soil. Plant Soil Environ 53: 58–64.

Turan M, Eşitken A, Şahin F (2009). Effects of Phosphate Solubilizing Microorganism on Soil Phosphorus Fractions. Cahpter 3. Phosphate Solubilizing Microbes For Crop Improvement. Editor; Khan M.S and Almas Zaidi Nova Science Publishers, Inc. New York.

Turan M, Eşitken A, Şahin F (2012a) Plant Growth Promoting Rhizobacteria as Alleviators for Soil Degradation Chapter 3. Bacteria in Agrobiology: Stress Management. Editor; Dinesh K. Maheshwari, Springer Heidelberg Dordrecht London New York.

Turan M, Güllüce M. von Wiren N, Sahin F (2012b). Yield promotion and phosphorus solubilization by plant growth–promoting rhizobacteria in extensive wheat production in Turkey. J. Plant Nutr. Soil Sci 75: 818–826.

Whitelaw M A (2000). Growth promotion of plants inoculated with phosphate solubilizing fungi. Advan. Agron 69: 99–151.

Yıldırım E, Turan M, Dönmez M F (2008). "Mitigation of salt stress in radish (Raphanus promoting rhizobacteria. Roman. Biotech. Lett 13: 3933–3943.

Sativus l.) by plant growth

Yıldırım E, Karlıdağ H, Turan M, Dursun A, Göktepe F (2011a). Growth, nutrient uptake and yield promotion of broccoli by Plant Growth Promoting Rhizobacteria with manure. HortScience 46: 932–936.

Yıldırım E, Turan M, Ekinci M, Dursun A, Çakmakçı R (2011b). Plant growth promoting rhizobacteria ameliorate deleterious effect of salt stress on lettuce. Sci. Res. Essays 6: 4389–4396.