Analysis of the Spatial Variability of Soil Properties in Different Physiographic Units

The success of a study in geostatistics depends partially on the intrinsic characteristics of the soil. This study aimed to identify and compare the spatial variability of soil properties in different physiographic units in Great Meandros Plain, Turkey. Soil samples were collected in Yuvaca (the river terrace), Köprü (the bottom of delta on the edge of a lagoon), and Sarıkemer (the back of the delta). Soils were sampled from the soil surface in 10 ha field using a regular grid with a 100 m distance in all fields. The numbers of the soil samples collected are 117 in Yuvaca and Köprü and 118 in Sarıkemer. Volumetric soil moisture content (SMC), EC, and soil texture were used for geostatistical analyzing. The semivariogram parameters and kriged contour maps showed different figures due to different intrinsic characteristics of the soils. Compared with Yuvaca and Sarıkemer, Köprü showed very low nugget values and high range values. For instance sand and silt percentages in Köprü resulted in very low nugget values (0.0001 ve 0.001) and high range values (805 m ve 744 m). Spherical variograms were adapted for all the properties except clay in Köprü. Although the coefficient of variation of the parameters was higher in Köprü than in the other areas, according to geostatistical calculations the lower nugget percentage and greater range indicated that there was strong spatial dependence. Dissimilarity in the fields resulted in statistically different correlations among the variables.

Farklı Fizyoğrafik Birimlerde Toprak Özelliklerinin Konumsal Değişkenliğinin Analizi

Jeoistatistik çalışmalarının başarısı kısmen toprak özelliklerine bağlıdır. Bu çalışmada Büyük Menderes Ovasında farklı topoğrafik alanlarda, toprak özelliklerinin konumsal değişkenliğinin tanımlanması ve karşılaştırılması amaçlanmıştır. Toprak örnekleri Yuvaca (teras), Köprü (lagün kenarı, delta) ve Sarıkemer (deltanın iç kısmı) yerleşkelerinden alınmıştır. Toprak örnekleri her üç bölgeden de 10 ha'lık alanlarda 100 m mesafe ile oluşturulan gridlerin kesişme noktalarından, toprak yüzeyinden alınmıştır. Toplanan toprak örneklerinin sayısı Yuvaca ve köprü'de 117, Sarıkemer'de 118 dir. Hacimsel toprak nemi, EC, toprak bünyesi jeoistatistiksel analizlerde kullanılmıştır. Semivariogramlar ve kestirim haritaları toprakların özelliklerindeki farklılık nedeniyle farklı sonuçlar göstermiştir. Yuvaca ve Sarıkemer ile karşılaştırıldığında, Köprü çok düşük külçe etkisi ve yüksek etki uzaklığı göstermiştir. Örneğin, Köprüde kum ve silt yüzdeleri çok düşük külçe etkisi (0.0001 ve 0.001) ve çok yüksek etki uzaklığı (805 m ve 744 m) vermiştir. Çalışmada Köprü' deki kil hariç tüm özellikler için küresel variogram modeli kullanılmıştır. Değişkenlerin varyasyon katsayılarının diğer alanlara göre yüksek olmasına rağmen, Köprü'de kuvvetli konumsal bağımlılığı gösteren düşük külçe yüzdelerine ve büyük etki uzaklığı değerleri bulunmuştur. Alanlar arasındaki farklılıklar değişkenler arasında istatistiksel olarak farklı ilişkilerin oluşmasına neden olmuştur.

___

  • B´adossy A, Lehmann W (1998). Spatial distribution of soil moisture in a small catchment. Part 1: geostatistical analysis. Journal of Hydrology 206: 1–15.
  • Biggar J W, Nielsen D R (1976). Spatial variability of leaching characteristics of a field soil. Water Resour. Res., 12: 78–84.
  • Bocchi S, Castrignano A, Fornaro F, Maggiore T (2000). Application of factorial kriging for mapping soil variation at field scale. European Journal of Agronomy 13: 295-308.
  • Bouma J (1973). Use of physical methods to expand soil survey inter- pretations of soil drainage conditions. Soil Sci. Soc. Am. Proc., 37: 413–412.
  • Bouyoucous G J (1951). A recalibration of hydrometer method for making mechanical analysis of soils. Agronomy Journal, 43: 434-438.
  • Bülent T B, Öztaş T (2012). Assessment of spatial distribution of some soil properties with geostatistics method. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 7 (2):10- 22.
  • Cambardella C A, Moorman T B, Nowak J M, Parkin T B, Karlen D L, Turco R F, Konopka A E (1994). Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. Journ., 58:1501-1511.
  • Demir Y, Erşahin S, Güler M, Cemek B, Günal H, Arslan H (2008). Spatial variability of depth and salinity of groundwater under irrigated ustifluvents in the Middle Black Sea Region of Turkey. Environ Monit Assess., doi: 10.1007/s10661-008-0582-1.
  • Famiglietti J S, Rudnicki J W, Rodell M (1998). Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. Journal of Hydrology, 210: 259–281.
  • Fu W, Tunney H, Zhang C (2010). Spatial variation of soil nutrients in a dairy farm and its implications for site-specific fertilizer application. Soil Till. Res., 106:185–193.
  • Gallardo A (2003). Spatial variability of soil properties in a flood plain forest in northwest Spain. Ecosystems, 6: 564-576.
  • Golaszewski J (2002). Geostatistical approach to data from field experiments with check plots. Electronic Journal of Polish Agricultural Universities, Agronomy, 5:(2).
  • Grego, C R , Vieira, S R, Lourenc¸a˜o, A L (2006). Spatial distribution of Pseudaletia sequax Franclemlont in triticale under no-till management. Sci. Agric., 63: 321–327.
  • GS+ (1998). Geostatistics for the environmental sciences, Gamma Design Software, Plainwell, MI, USA.
  • Han F, Zheng J, Hu W, Du F, Zhang X (2010). Spatial variability and distribution of soil nutrients in a catchment of the loess plateau in China. Acta Agriculturae Scandinavica, Section B - Plant Soil Science, 60: 1651-1913.
  • Hu W, Shao M A, Wang Q J, Fan J, Reichardt K (2008). Spatial variability of soil hydraulic properties on a steep slope in the Loess Plateau of China. Scientia Agricola, 65: 268-276.
  • Iqbal J, Thomasson J A, Jenkins J N, Owens P R, Whisler F D (2005). Spatial variability analysis of soil physical properties of alluvial soils. Soil Sci. Soc. Am. Journal, 69:1338-1350. Journel A G, Huijbregts C J (1987). Mining geostatistics. Academic Press, London.
  • Kerry R, Oliver M A (2004). Average variograms to guide soil sampling for land management. Int. J. Appl. Earth Obs., 5:307–325.
  • Kızılkaya R, Dengiz O, Özyazıcı M A, Aşkın T, Mikayilov F, Shein E V (2011). Spatial distribution of heavy metals in soils of the Bafra Plain in Turkey. Eurasian Soil Science, 44 (12): 1343- 1351.
  • Korucu T, Arslan S, Günal H, Şahin M (2009). Spatial and temporal variation of soil moisture content and penetration resistance as affected by post harvest period and stubble burning of wheat. Fresenius Environmental Bulletin, 18 (9a):1736-1747.
  • Miao Y, Robinson C A, Stewart B A, Evett S R (2000). Comparison of soil spatial variability in crop and rangeland. In: Proceedings of the Fifth International Conference on Precision Agriculture, July 16-19, Bloomington, MN, USA.
  • Muneto H, Naoko T K C, Chongrak W, Hiroshi T (2003). Fire history influences on the spatial heterogeneity of soil nitrogen transformations in three adjacent stands in a dry tropical forest in Thailand. Plant and Soil, 249: 309-318.
  • Özgöz E (2009). Long term conventional tillage effect on spatial variability of some soil physical properties. J. Sustain. Agric., 33: 142–160.
  • Richards L A (ed) (1954). Diagnosis and improvement of saline and alkali soils, USDA Agriculture Handbook, No. 60.
  • Robertson GP, Klingensmith K M, Klug M J, Paul E A, Crum J R, Ellis B G (1997). Soil resources, microbial activity, and primary production across an agricultural ecosystem. Ecol. Appl., 7:158-170.
  • Schimel D, Melillo J, Tian H, McGuire D, Kicklighter D, Kittel T, Rosenbloom N, Running S, Thornton P, Ojima D, Parton W, Kelly R, Sykes M, Neilson R, Rizzo B (2000). Contribution of increasing CO2 and climate to carbon storage by cosystems in the United States. Science, 287: 2004–2006.
  • Sun B, Zhou S L, Zhao Q G (2003). Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma, 115: 85-99.
  • Tesfahunegn G B, Tamene L, Vlek P. L.G (2011). Catchment-scale spatial variability of soil properties and implications on site-specific soil management in northern Ethiopia . Soil & Tillage Research, 117:124–139.
  • Trangmar B B, Yost RS, Uehara G (1985). Application of geostatistics to spatial studies of soil properties. Adv. Agron., 38:45-94.
  • Troelstra S R, Lotz L A P, Wagenaar R, Sluimer L (1990). Temporal and spatial variability in soil nutrient status of a former beach plain. Plant and Soil, 127:1-12. Webster R (2001). Statistics to support soil research and their presentation. European J. Soil Sci., 52:331-340.
  • Ying Z, Peth S, Hallett P; Wang X, Giese M. YingZhi G, Horn R (2011). Factors controlling the spatial patterns of soil moisture in a grazed semi-arid steppe investigated by multivariate geostatistics. Ecohydrology, 4 (1):36-48.
  • Yeşilırmak E, Atatanır L, Yorulmaz A, Aydın G, Turgut C (2011). Spatial variability of Fe, Mn, Zn and Cu in soils of büyük menderes delta in western Turkey. Fresenius Environmental Bulletin, 20 (2):310-316.