Production and analysis of composite nanofiber and heat applied nanofiber

Bu çalışmada, iki farklı nanolif uygulaması denenmiştir. Birinci uygulamada, çevresel sıcaklıkta solvent tekniğiyle nanolif elde edilemeyen Maleik Anhidrid graftlı Polipropilenden (MAH PP) nanolif elde edilmiştir. Çözelti sıcaklığının nanolif üretilebilirliğine etkisi incelenmiştir. Sonuçta 70°C altında nanolif üretilemediği gözlenmiştir. Çözelti sıcaklığı 100°C civarında iken bead yapısında artış görülmüştür. Yüksek sıcaklığın viskoziteyi düşürmesi bead oluşumunu arttırmıştır. Diğer uygulamada ise selüloz nanowhiskers (CNW) ile beraber elastomeric polimerden (Polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene graft-maleic anhydride) (SEBS-g-MA) kompozit nanolif üretilmiştir. Besleme hızı ve çözeltideki su miktarının lif yapısına olan etkisi incelenmiştir. Su miktarındaki artışın lif yapısında deformasyona neden olduğu, besleme hızındaki düşüşün ise daha ince lif yapısı oluşumuna katkıda bulunduğu gözlenmiştir.

Kompozit nanolif ve ısı uygulanmış nanoliflerin üretim ve analizi

In this study, two different applications related with nanofiber production have been studied. In one application, nanofiber was obtained from Maleic Anhydrite grafted Polypropylene (MAH PP) that it is not possible to produce nanofiber at the environmental temperature by solvent technique. The effect of the temperature of polymer solvent on nanofiber producibility has been investigated. It has been seen that it is not possible to produce nano fiber by o o solvent below 70°C The bead on the nanofiber increases when solution temperature is around 100°C Bead formation may be due to lower viscosity resulted from higher temperature. In the other application, elastomeric polymer (Polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene graft-maleic anhydride) (SEBS-g-MA) together with cellulose nanowhiskers (CNW) was used to produce composite nanofiber. The effect of feed rate and also the amount of water content on properties of composite nanofiber have been investigated. It has been seen that an increase of water content results to deformation of nanofiber morphology and decrease of feeding rate results to thinner fiber.

___

  • 1. Barron, K., Joo, Y., Zhou, H., 'Electrospinning of Polypropylene Nanocomposite Nanofibers from Solution ' , http://matdl.org/repository/eserv/matdl:403/n2004_CCMR_R EU_Barron.pdf (2004, accessed June 2011).
  • 2. Jarusuwannapoom, T., Hongrojjanawiwat, W., Jitjaicham, S., Wannatong, L., Nithitanakul, M., Pattamaprom, C., Koombhongse, P., Rangkupan, R., Supaphol, P., (2005), Effect of Solvents on Electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers, European Polymer Journal; 41: 409-421.
  • 3. Liu, D., Fan, Z., Sun, P., Dong, X., (2004), Solution Properties of Chlorinated Polypropylene and Maleic Anhydride Grafted Chlorinated Polypropylene, Physics and Chemistry of Liquids; 42: 551–560.
  • 4. Funasaka, T., Ashihara, T., Maekawa, T., Ohno, S., Meguro, M., Nishino, T., Nakamae, K., (1999), Adhesive Ability and Solvent Solubility of Propylene-butene Copolymers Modified With Maleic Anhydride, International Journal of Adhesion & Adhesives; 19: 367-371.
  • 5. Feng, S., Shen, X., (2010), Electrospinning and Mechanical Properties of Polystyrene and Styrene–Isoprene–Styrene Block Copolymer Blend Nanofibres, Journal of Macromolecular Science R _ , Part B: Physics;49:345–354
  • 6. Junkasem, J., Rujiranavit, R., Supaphol, P., (2006), Fabrication of á-chitin whiskers-reinforced poly(vinyl alcohol) nanocomposite nanofibers by electrospinning, Nanotechnology; 17: 4519-4528.
  • 7. Peresin, M., S., Habibi, Y., Zoppe, J., O., Pawlak, J., J., Rojas, O., J., (2010), Nanofiber Composites of Polyvintl Alcohol and Cellulose Nanocrystals: Manufacture and Characterization, Biomacromolecules; 11: 674-68.
  • 8. Qui, W., Endo, T., Hirotsu, T., (2006), Interfacial Interaction, Morphology, and Tensile Properties of a Composite of Highly Crystalline Cellulose and Maleated Polypropylene, Wiley Periodicals, Inc. J Appl Polym Sci;102: 3830–3841.
  • 9. Ucar, N., Bahar, E., Oksuz, M., Onen, A., Wang, Y., Ucar, M., Ayaz, O., Demir, A., (2011), Nano Composite Polymer Produced From Polypropylene And Nano Cellulose Whiskers, Polymer Composites, 27-28 April 2011, Pilsen, Czech Republic, 95-98.
Tekstil ve Mühendis-Cover
  • ISSN: 1300-7599
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1987
  • Yayıncı: TMMOB Tekstil Mühendisleri Odası
Sayıdaki Diğer Makaleler

Yeşil Enerji Tekstil Uygulamaları İçin Piezoelektrik Monofilament Eldesi

DERMAN VATANSEVER BAYRAMOL, R. L. HADİMANİ, Tahir SHAH, Elisa SİORES

Düzgünlük-Düzgünsüzlük İndeksinin Tarayıcı Verileri Kullanılarak Belirlenmesi

Tayebe SOLEYMANİAN, HOSSİEN Seyed AMİRSHAHİ, GHANBAR Mansoureh AFJEH

Biyo-Kompozitler: Termoplastik Biyopolimerlerin ve Endüstriyel Doğal Liflerin Kompozit Uygulamaları İçin Stapel Lif Harmanından Tekstil Yüzeyine Kadar Üretimi

Bayram ASLAN, S. RAMASAWAMY, M. RAİNA, Thomas GRIES

Tekstilde Fonksiyonel OPV-Folyolarının Birleştirme İşleminin İncelenmesi

Volker NİEBEL, Tristan KOTTOHOFF, Thomas GRIES

Polietilen Tereftalat Liflerindeki Triklosanın Belirlenmesi ve Karakterizasyonu

MEHMET ORHAN

Kompozit Nanolif ve Isı Uygulanmış Nanoliflerin Üretim ve Analizi

Onur AYAZ, Nuray UÇAR, Elif BAHAR, Mustafa OKSUZ, Mehmet UCAR, Aysen ONEN, Ali DEMİR, Youjiang WANG

Ultra Yüksek Modüllü Zift-Esaslı Karbon Liflerin Düğüm ve Halka Çekme Testleri

Michael GLOWANİA, Sevn SCHNEİDERS, Johanne HESSELBACH, Thomas GRIES

Poliamid Boyama İşleminde DBD Plazma Modifikasyonunun Etkisi

António Pedro SOUTO, Fernando Ribeiro OLİVEİRA, Marta FERNANDES, Noémia CARNEİRO

Production and analysis of composite nanofiber and heat applied nanofiber

Onur AYAZ, Nuray UÇAR, Elif BAHAR, MUSTAFA ÖKSÜZ, MEHMET UÇAR, HACER AYŞEN ÖNEN, Ali DEMİR, Youjiang WANG

Giysi Beden Sistemi ve Bilgisayar Destekli Vücut Modellerinin Geliştirilmesi

Darko UJEVİC, Slavenka PETRAK, Marijan HARSTİNSKİ, Maja MAHNİC