Pirol/anilin kopolimerleri ile kaplanan pet nonwoven kumaşların yapısal ve elektriksel özellikleri

Polipirol (PPy) ve polianilin (PAni) yaygın olarak bilinen iletken polimerlerdir. Bu polimerler mükemmel elektrokimyasal özelliklere ve yüksek iletkenliğe sahiptir. Bu çalışmada, pirol/anilin kopolimerizasyonu poliester dokusuz yüzey kumaşlara uygulanmıştır.Yüzey aktif maddenin ve farklı oksidasyon maddelerinin kaplanan kumaşların iletkenlik özelliklerine etkisi incelenmiştir. Kaplanan kumaşların morfolojik, yapısal ve elektriksel özellikleri sırasıyla tarama elektron mikroskobu (SEM), Fourier dönüşüm kızılötesi spektroskopi cihazı (FTIR) ve "dört-prob" metodu kullanarak incelenmiştir. Kopolimerler ve homopolimerler ile kaplanan nonwoven kumaşların özellikleri karşılaştırılmıştır. Homopolimerler ile karşılaştırıldığında kopolimerlerin elektriksel iletkenliğinin azaldığı tespit edilmiştir. Bu kopolimerlerin morfolojik yapısıyla açıklanabilir. Kaplanan kumaşların yıkama dayanımını ve polimerlerin nonwoven kumaşa nüfuz edip etmediğini değerlendirmek için aynı zamanda yıkama testleri gerçekleştirilmiştir.Yıkamadan sonra kopolimerler ile kaplanan kumaşların yüzey direnç değerlerinin tek başına PAni ile kaplanan kumaşların direnç değerlerinden daha düşük olduğu bulunmuştur.

Structural and electrical properties of pet nonwoven fabrics coated with pyrrole/aniline copolymers

Polypyrrole and polyaniline are well known conductive polymers. They have excellent electrochemical properties and high conductivity. The pyrrole/aniline copolymerization has been carried out on polyester nonwoven fabric in this study. The effect of surfactant agent and different oxidant agents on conductivity properties of the coated fabrics was investigated. The morphological, structural and electrical properties of the coated fabrics were respectively analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and "four-probe" method. The properties of the nonwoven fabrics coated with the copolymers and homopolymers were then compared. A reduced electrical conductivity has been observed, compared to the homopolymer, which can be explained by the morphological structure of the copolymer. The washing test was also carried out to evaluate the durability behavior of coating fabrics and whether the polymers penetrated into the nonwoven fabrics or not. The sheet resistance values of the fabrics coated with copolymers were lower than those of the fabrics coated with PAni after washing process.

___

  • 1. Oh, K. W., Hong, K. H., Kim, S. H., (1999), Electrically conductive textiles by in situ polymerization of aniline, Journal of Applied Polymer Science, 74:2094-2101.
  • 2. Kim, J. W., Cho, C. H., Liu, F., Choi, H. J., Joo, J., (2003), Physical characteristics of aniline/pyrrole copolymer, Synthetic Metals, 135-136:17-18.
  • 3. Kutanis, S., Karikisla, M., Akbulut, U., Saçak, M., (2007), The conductive polyaniline/poly(ethylene tere-phthalate) composite fabrics, Composites:PartA, 38:609-614.
  • 4. Malinauskas, A., (2001), Chemical deposition of conducting polymers. Polymer, 42:3957-3972.
  • 5. Hirasi, R., Shikataa, T., Shiraib, M., (2004), Selective formation of poly aniline on wool by chemical polymeri-zation using potassium iodate, Synthetic Metals, 146:73-77.
  • 6. Jarvinen, K., Puolakka, A., (2003), Weathering of polyaniline-treated polyester filter fabrics, Textile Research Journal, 73(7):593-596.
  • 7. Kim, B., Koncar, V., Dufour, C., (2006), Polyaniline- coated pet conductive yarns: Study of electrical, mechanical, and electro-mechanical properties, Journal of Applied Polymer Science, 101:1252-1256.
  • 8. Avloni, J., Ouyang, M., Florio, L., Henn, A. R., Sparavigna, A., (2007), Shielding effectiveness evaluation of metallized andpolypyrrole-coatedfabrics, Journal of Thermoplastic Composite Materials, 20:241-254.
  • 9. Kincal, D., Kumar, A., Child, A. D., Reynolds, J. R., (1998), Conductivity switching in polypyrrole-coated textilefabrics as gas sensors, Synthetic Metals, 92:53-56.
  • 10. Hâkansson, E., Amiet, A., Kaynak. A., (2006), Electromagnetic shielding properties of polypyrrole/ polyester composites in the 1 -18 GHz frequency range, Synthetic Metals, 156:917-925.
  • 11. Stejskal, J., Trchova, M., Ananievab, I.A., Jancab, J. Prokes, J., Fedorova, S., Sapurina, I., (2004), Poly (aniline- co-pyrrole): powders, films, and colloids, thermophoretic mobility of colloidal particles, Synthetic Metals, 146:29-36.
  • 12. Bhat, N.V., Seshadri, D.T., Radhakrishnan S., (2004), Preparation, characterization, and performance of conductive fabrics:cotton+pani, Textile Research Journal, 74(2): 155-166.
  • 13. Lin T., Wang, L, Wang, X., Kaynak A., (2005), Polymerising pyrrole on polyester textiles and controlling the conductivity through coating thickness. Thin Solid Films, 479:77-82.
  • 14. Stejskal, J., Trchova, M., Brodinova, J. Sapurina I.., (2007), Flame retardancy a.orded by polyaniline deposited on wood. Journal of Applied Polymer Science, 103:24-30.
  • 15. Lim, V.W.L., Kang, E.T., Neoh, K.G., Ma, Z.H., Tan K.L., (2001), Determination of pyrrole-aniline copolymer composition by x-ray photoelectron spectroscopy. Applied Surface Science, 181:317-326.
  • 16. Stejskal, J., Prokes, J., Trchova M., (2008), Reprotonation of polyaniline: A route to various conducting polymer materials. Reactive and Functional Polymers, 68:1355-1361.
  • 17. Liang, Q.Y., Neoh, K.G., Kang, E.T., Tan, K.L., Wong H.K., (1992), Charge transfer interactions in bithiophene- pyrrole and bithiopheneaniline copolymers. European Polymer Journal, 28(7):755-763.
  • 18. Gettinger C.L., Heeger A.J., Pine D.J., Cao Y., (1995), Solution characterization of surfactant solubilized polyaniline. Synthetic Metals, 74:81-88.
  • 19. Moon, D.K., Yun, J.Y., Osakada, K., Kambara, T., Yamamoto. T., (2007), Synthesis of random copolymers of pyrrole and aniline by chemical oxidative polymerization. Molecular Crystals and Liquid Crystals, 464:177-185.
  • 20. Cho, C.H., Choi, H.J., Kim, J.W., Jhon, M.S., (2004), Synthesis and electrorheology of aniline/pyrrole copolymer. Journal of Materials Science, 39:1883-1885.
  • 21. Karakisla, M., Saçak, M. (2002), The chemical synthesis of conductive polyaniline by using benzoyl peroxide. Journal of Macromolecular Science,Part A, 39(11): 1349-1359.
  • 22. Rajagopalan, R., Iroh, J.O., (2002), Electrodeposition of adherent polyaniline-polypyrrole composite coatings on low carbon steel, The Journal of Adhesion, 78(10): 83 5-860.
  • 23. Li, X., Bian, C., Chen, W, Xue, G., Zhu, W., Fang J., (2003), Spectral studies of apolyaniline/diatomite composite, Spectroscopy Letters, 36(l):25-33.