PARTIALLY TRANSFORMATION OF ZINC NITRATE TO ZINC COMPOUNDS ON PVC NANOFIBERS AT LOW TEMPERATURE HEAT TREATMENT AND INVESTIGATION OF THE PRODUCTS’ OPTICAL PROPERTIES

Zinc compounds are photoactive material and they are incorporated into the material to differentiate the opticalproperties of the material. PVC/Zn(NO3)2 (polyvinyl chloride /zinc nitrate) composite precursor nanofibers were produced byelectrospinning by dissolving PVC and Zn(NO3)2 in the electrospinning solution together. As-spun nanofibers are treated withaqueous NaOH and then stayed at 80°C for one hour to partially convert Zn(NO3)2 to zinc compounds in/on the PVC nanofibers.Nanofibers have been investigated in terms of morphological, chemical, thermal and optical properties. An increase in transmittancevalues was observed at the nanofibers after thermal treatment due to the ratio of Zn(NO3)2 in the precursor PVC/ Zn(NO3)2nanofibers, and a decrease in reflectance values was observed. The produced fine nanofibers and nanofiber coated surfaces could bepotentially used to coat drapery fabrics, where controllable light transmission is required.

PVC NANOLİFLERDE ÇİNKO NİTRATIN DÜŞÜK SICAKLIKTA ISIL İŞLEMLE KISMİ OLARAK DİĞER ÇİNKO BİLEŞİKLERİNE DÖNÜŞÜMÜ VE OPTİK ÖZELLİKLERİNİN İNCELENMESİ

Çinko bileşikleri fotoaktif malzemeler olup polimerler başta olmak üzere birçok malzemenin içerisine katılarak malzemelerin optik özelliklerini farklılaştırabilmektedirler. Çinko bileşiklerinin üretilen polimer nanolifin her bölgesinde bulunmasını sağlamak amacıyla çinko nitrat (Zn(NO3)2) prekürsor polivinil klorür (PVC) ile birlikte çözülerek elektro çekim metoduyla PVC/Zn(NO3)2 kompozit nanolifler üretilmiştir. Nanolifler önce sulu NaOH çözeltisiyle işlem, ardından 80oC de fırınlanarak PVC nanoliflerdeki Zn(NO3)2 ın diğer çinko bileşiklerine dönüştürülmesi sağlanmıştır. Nanolifler morfolojik, kimyasal, termal ve optik özellikler bakımından incelenmiştir. Prekürsor PVC/Zn(NO3)2 nanoliflerdeki Zn(NO3)2 oranına bağlı olarak termal işlem sonrası nanoliflerde transmittans değerlerinde artma gözlemlenirken reflektans değerlerinde azalma gözlemlenmiştir. Üretilen ince nanolifler ve nanolif kaplı yüzeyler içerisindeki çinko bileşeni miktarına bağlı olarak ışık geçişinin kontrollü olması istenen perdelik kumaşların kaplanmasında kullanılabilirler.

___

1. Kathirvelu S., D’Souza L., Dhurai B., (2009), UV protection finishing of textiles using ZnO nanoparticles, Indian J. Fibre Text. Res., 34, 267–273.

2. Kim I.-D., Hong J.-M., Lee B.H., Kim D.Y., Jeon E.-K., Choi D.- K., Yang D.-J., (2007), Dye-sensitized solar cells using network structure of electrospun ZnO nanofiber mats, Appl. Phys. Lett., 91, 163109.

3. Sharma R., Khanuja M., Islam S.S., Singhal U., Varma A., (2017), Aspect-ratio-dependent photoinduced antimicrobial and photocatalytic organic pollutant degradation efficiency of ZnO nanorods, Res. Chem. Intermed., 43, 5345–5364.

4. Lopes O.F., de Mendonça V.R., Umar A., Chuahan M.S., Kumar R., Chauhan S., Ribeiro C., (2015), Zinc hydroxide/oxide and zinc hydroxy stannate photocatalysts as potential scaffolds for environmental remediation, New J. Chem., 39, 4624–4630.

5. Olaru N., Calin G., Olaru L., (2014), Zinc oxide nanocrystals grown on cellulose acetate butyrate nanofiber mats and their potential photocatalytic activity for dye degradation, Ind. Eng. Chem. Res., 53, 17968–17975.

6. McBride R.A., Kelly J.M., McCormack D.E., (2003), Growth of well-defined ZnO microparticles by hydroxide ion hydrolysis of zinc salts, J. Mater. Chem., 13, 1196-1201.

7. Al-Taa’Y W., Abdul Nabi M., Yusop R.M., Yousif E., Abdullah B.M., Salimon J., Salih N., Zubairi S.I., (2014), Effect of nano ZnO on the optical properties of poly(vinyl chloride) films, Int. J. Polym. Sci., 2014, 1-6.

8. Mallakpour S., Javadpour M., (2017), Antimicrobial, mechanical, optical and thermal properties of PVC/ZnO-EDTA nanocomposite films, Polym. Adv. Technol., 28, 393-403.

9. Bhardwaj N., Kundu S.C., (2010), Electrospinning: A fascinating fiber fabrication technique, Biotechnol. Adv., 28, 325–347.

10. Lee K.H., Ki C.S., Baek D.H., Kang G.D., Ihm D.-W., Park Y.H., (2005), Application of electrospun silk fibroin nanofibers as an immobilization support of enzyme, Fibers Polym., 6, 181–185.

11. Wang Y., Hsieh Y.L., (2008), Immobilization of lipase enzyme in polyvinyl alcohol (PVA) nanofibrous membranes, J. Memb. Sci., 309, 73-81.

12. Ye P., Xu Z.K., Wu J., Innocent C., Seta P., (2006), Nanofibrous poly(acrylonitrile-co-maleic acid) membranes functionalized with gelatin and chitosan for lipase immobilization, Biomaterials. 27 (2006) 4169-4176.

13. Anitha S., Brabu B., John Thiruvadigal D., Gopalakrishnan C., Natarajan T.S., (2013), Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO, Carbohydr. Polym., 97, 856-863.

14. Chiscan, O., Dumitru I., Tura V., Stancu A., (2012), PVC/Fe electrospun nanofibers for high frequency applications, J. Mater. Sci., 47, 2322-2327.

15. Bai Y., Wang Z., Wu C., Xu R., Wu F., Liu Y., Li H., Li Y., Lu J., Amine K., (2015), Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery, ACS Appl. Mater. Interfaces., 7, 5598-5604.

16. Ramesh S., Leen K.H., Kumutha K., Arof A.K., (2007), FTIR studies of PVC/PMMA blend based polymer electrolytes, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 66, 1237- 1242. 17. Zhong Z., Cao Q., Jing B., Wang X., Li X., Deng H., (2017), Electrospun PVdF-PVC nanofibrous polymer electrolytes for polymer lithium-ion batteries, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 177, 86-91.

18. Waqas H., Salman M.S., Riaz A., Riaz N., Shabbir S., (2015), Unique morphologies of zinc oxide synthesized by thermal decomposition and co-precipitation routes: Ultraviolet absorption and luminescence characteristics, Cryst. Res. Technol., 50, 379- 388.

19. Hassan, H.S., Elkady, M.F., Farghali, A.A., Salem, A.M., El- Hamid, A.I.A., (2017), Fabrication of novel magnetic zinc oxide cellulose acetate hybrid nano-fiber to be utilized for phenol decontamination, J. Taiwan Inst. Chem. Eng., 78, 307-316.

20. Zhou Y., Li X., Yu H.Y., Hu G.L., Yao J.M., (2016), Facile fabrication of controllable zinc oxide nanorod clusters on polyacrylonitrile nanofibers via repeatedly alternating immersion method, J. Nanoparticle Res., 18, 359.

21. Hasan M., Banerjee A.N., Lee M., (2015), Enhanced thermo-optical performance and high BET surface area of graphene@PVC nanocomposite fibers prepared by simple facile deposition technique: N2 adsorption study, J. Ind. Eng. Chem., 21, 828-834.

22. Yang P., Yan J., Sun H., Fan H., Chen Y., Wang F., Shi B., (2015), Novel environmentally sustainable cardanol-based plasticizer covalently bound to PVC via click chemistry: synthesis and properties, RSC Adv., 5, 16980-16985.

23. Elashmawi I.S., Hakeem N.A., Marei L.K., Hanna F.F., (2010), Structure and performance of ZnO/PVC nanocomposites, Phys. B Condens. Matter., 405, 4163-4169.

24. Li P., Xu Z.P., Hampton M.A., Vu D.T., Huang L., Rudolph V., Nguyen A.V., (2012), Control preparation of zinc hydroxide nitrate nanocrystals and examination of the chemical and structural stability, J. Phys. Chem. C., 116, 10325-10332.

25. Li B., Pan S., Yuan H., Zhang Y., (2016), Optical and mechanical anisotropies of aligned electrospun nanofibers reinforced transparent PMMA nanocomposites, Compos. Part A Appl. Sci. Manuf., 90, 380-389.

26. Bolarinwa H.S., Onuu M.U., Fasasi A.Y., Alayande S.O., Animasahun L.O., Abdulsalami I.O., Fadodun O.G., Egunjobi, I.A., (2017), Determination of optical parameters of zinc oxide nanofibre deposited by electrospinning technique, J. Taibah Univ. Sci., 11, 1245-1258.
Tekstil ve Mühendis-Cover
  • ISSN: 1300-7599
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1987
  • Yayıncı: TMMOB Tekstil Mühendisleri Odası
Sayıdaki Diğer Makaleler

COMBINING LASER AND TEXTILE TECHNOLOGY FOR JUST-IN-TIME PRODUCTION OF COMPOSITES

Sebastian OPPITZ, Stefan JANSSEN, Thomas GRIES

Dokuma Kumaş Hatalarının Sistematik Sınıflandırılması Üzerine Bir Çalışma

Berkay BARIŞ, H. Ziya ÖZEK

RİNG İPLİKÇİLİĞİ İŞLEMİNİN PARAMETRİK ANALİZİ VE BULANIK MANTIK METODU İLE MODELLEMESİ

Shankar CHAKRABORTY, Partha Protim DAS

AN INVESTIGATION OF THE ACTIVATION OF MULTI-COLOUR CHANGING PHOTOCHROMIC TEXTILES

Dilusha RAJAPAKSE

PVC NANOLİFLERDE ÇİNKO NİTRATIN DÜŞÜK SICAKLIKTA ISIL İŞLEMLE KISMİ OLARAK DİĞER ÇİNKO BİLEŞİKLERİNE DÖNÜŞÜMÜ VE OPTİK ÖZELLİKLERİNİN İNCELENMESİ

Yezdan İrem AKGÜL, Yakup AYKUT

PARTIALLY TRANSFORMATION OF ZINC NITRATE TO ZINC COMPOUNDS ON PVC NANOFIBERS AT LOW TEMPERATURE HEAT TREATMENT AND INVESTIGATION OF THE PRODUCTS’ OPTICAL PROPERTIES

Yezdan İrem AKGÜL, Yakup AYKUT

Reaktif Red 141 Boyasının Cloisite 20A Kili Üzerine Adsorpsiyonunun İncelenmesi

Nuriye KERTMEN, E. Perrin AKÇAKOCA KUMBASAR, Saadet YAPAR

KOMPOZİTLERİN TAM ZAMANINDA ÜRETİMİ İÇİN LAZER VE TEKSTİL TEKNOLOJİLERİNİN BİRLEŞTİRİLMESİ

Thomas GRIES, Sebastian OPPITZ, Stefan JANSSEN

Termofiksaj İşlem Parametrelerinin Gipe İplik Kullanılarak Üretilmiş Örme Kumaşlarda Esneklik ve Boyutsal Kararlılığa Etkisi

Ahmet ÇAY, Nida OĞLAKCIOĞLU, Burak SARI

PVC Nanoliflerde Çinko Nitratın Düşük Sıcaklıkta Isıl İşlemle Kısmi Olarak Diğer Çinko Bileşiklerine Dönüşümü ve Optik Özelliklerinin İncelenmesi

Yezdan İrem AKGÜL, Yakup AYKUT