PAMUK/LYOCELL KUMAŞLARIN TİTANYUM (IV) OKSİT VARLIĞINDA ULTRAVİYOLE IŞINLARIYLA HETOROJEN FOTOKATALİZ İLE AĞARTILMASI VE AĞARTMA İŞLEMİNE OKSİJEN RADİKALİ VARLIĞININ ETKİSİNİN İNCELENMESİ

Selülozik liflerden üretilen tekstil materyalleri genellikle, ağartma işlemi uygulanmadan boyama, baskı ve bitim işlemi gibitekstil proseslerine tabi tutulmazlar veya son ürün olarak kullanılmazlar. Bu çalışma kapsamında pamuk/lyocell karışımı selülozikkumaşlar TiO2 varlığında ultraviyole (UV) ışığıyla ağartılmıştır. Ağartma işleminde TiO2’nin fotokatalitik özelliğinden faydalanılarakUV ışık altında oksijen radikalleri salımı yapması sağlanmış, ortaya çıkan radikaller vasıtasıyla ağartma işlemi gerçekleştirilmiştir.Yapılan çalışmalarda 1-300 g/L arasında değişen TiO2 konsantrasyonunun etkisi incelenmiştir. En iyi ağartma etkisi için gerekli olanpH derecesi, optimum sıcaklık değerleri ve süresi araştırılmıştır. Uygulamalar sonrasında yapılan spektrofotometre ölçümleriylebeyazlık indeksleri belirlenmiştir. Hidrojen peroksitle uygulamalar yapılarak foto-ağartmayla elde edilen sonuçlar karşılaştırılmıştır.Foto ağartma sonrasında kumaşın mukavemet ve hidrofilite özelliklerindeki değişim incelenmiştir. Elektron Spin Rezonans (ESR)ölçümleriyle ve floresin analiziyle TiO2 ağartma flottesindeki oksijen radikalleri saptanmıştır. Çalışmanın sonuçlarına göre, katalitikreaksiyonlarla etki gösteren, minimum kimyasal tüketimiyle çevreye duyarlı alternatif bir ağartma yöntemi ortaya konmuştur.

BLEACHING OF COTTON/LYOCELL FABRICS WITH HETEROGENEOUS PHOTOCATALYSIS WITH TITANIUM (IV) OXIDE UNDER UV LIGHT AND INVESTIGATION OF THE EFFECT OF OXYGEN RADICALS ON BLEACHING PROCESS

Cellulosic fibers, generally, are not used as final product or get further textile processes such as dyeing, printing or finishing, unless they are bleached. In this study, cotton/lyocell fabrics were bleached with ultraviolet radiation accompanied by TiO2. Photocatalytic characteristic of TiO2 was utilized for bleaching. Oxygen radical generation from TiO2 surface under UV radiation was ensured. The effect of TiO2 concentrations between 1-300 g/L was investigated. Optimum pH, temperature and durations were determined for the best bleaching effect. Hydrogen peroxide bleaching was carried out and the results were compared with photobleaching. The changes on the tenacity and hydrophilicity characteristics of the fabric were investigated. Oxygen radicals in the TiO2 bleaching bath were determined with Electron Spin Resonance technique and fluorescein assay. An alternative environmental friendly bleaching method which depends on catalytic reactions was presented as a result of the performed experiments.

___

  • 1. Karmakar, S.R., (1999), Chemical Technology in the Pre-treatment Processes of Textiles, Elsevier, Amsterdam.
  • 2. Carr, C.M., (1995) Chemistry of the Textiles Industry, Chapman&Hall, Londra.
  • 3. Gedik, G., Avinc, O. (2018) Bleaching of Hemp (Cannabis Sativa L.) Fibers with Peracetic Acid for Textiles Industry Purposes, Fibers and Polymers, 19, 1, 82-93.
  • 4. Wang, N., Tang, P., Zhao, C., Zhang Z., Sun, G. (2020) An environmentally friendly bleaching process for cotton fabrics: mechanism and application of UV/H2O2 system, Cellulose, 27, 1071–1083
  • 5. Peng, M., Wu, S., Du, J., Sun, C., Zhou, C., Xu, C., Hu, X. (2018) Establishing a Rapid Pad-Steam Process for Bleaching of Cotton Fabric with an Activated Peroxide System, ACS Sustainable Chem. Eng. 6, 7, 8599-8603
  • 6. Xu, C, Hinks, D., El-Shafei, A., Hauser, P., Li, M., Ankeny, M., Lee, K. (2011) Review of Bleach Activators for Environmentally Efficient Bleaching of Textiles, Journal of Fiber Bioengineering & Informatics 4:3 209-219
  • 7. Pereira, L, Bastos, C., Tzanov T., Cavaco-Paulo, A., Guebitz, G.M. (2005) Environmentally friendly bleaching of cotton using laccases, Environ Chem Lett, 3, 66-69 8. Eren, S., (2018), Photocatalytic hydrogen peroxide bleaching of cotton, Cellulose, 25, 3679-3689.
  • 9. Perinçek, S., Duran, K., Korlu, A.E., (2015), Novel bleaching of linen fabrics using ultraviolet ırradiation, FIBRES & TEXTILES in Eastern Europe, 23, 2(110), 107-115.
  • 10. Montazer, M., Morshedi, S., (2014), Photo bleaching of wool using nano TiO2 under daylight irradiation, Journal of Industrial and Engineering Chemistry, 20, 83–90.
  • 11. Montazer, M., Morshedi, S., (2012) Nano photo scouring and nano photo bleaching of raw cellulosic fabric using nano TiO2. International Journal of Biological Macromolecules, 50, 1018– 1025
  • 12. Pelaeza, M., Nolan, N.T., Pillai S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S.M., Hamilton, J.W.J., Byrne, J.A., O’Shea, K., Entezari, M.H., Dionysiou, D.D., (2012), A review on the visible light active titanium dioxide photocatalysts for environmental applications, Applied Catalysis B: Environmental, 125, 331– 349.
  • 13. Khataee, A.R., Kasiri, M.B., (2010), Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes, Journal of Molecular Catalysis A: Chemical, 328, 8–26
  • 14. Harikumar, P.S., Joseph, L., Dhanya, A., (2013), Photocatalytic degradation of textile dyes by hydrogel supported titanium dioxide nanoparticles, Journal of Environmental Engineering & Ecological Science, 2, 1-9.
  • 15. Anas, M., Han, D.S., Mahmoud, K., Park, H. Abdel-Wahab, A., Photocatalytic degradation of organic dye using titanium dioxide modified withmetalandnon-metaldeposition, Materials Science in Semiconductor Processing, 41, 209–218
  • 16. Sivakumar, A., Murugan, R., Sunderesan, K., Periyasamy, S., (2013), UV protection and self cleaning finish for cotton fabric using metal oxide nano particles, Indian Journal of Fibre & Textile Research, 38, 285-292
  • 17. Gupta, K.K., Jassal, M., Agrawal, A.K., (2008) Sol-gel derived titanium dioxide finishing of cotton fabric for self cleaning, Indian Journal of Fibre & Textile Research, 33, 443-450
  • 18. Veronovski, N., Rudolf, A., Smole, M.S., Kreze, T., Gersak, J., (2009), Self-cleaning and handle properties of TiO2 -modified textiles, Fibers and Polymers, 10, 4, 551-556.
  • 19. Montazer, M., Pakdel, M., (2011), Self-cleaning and color reduction in wool fabric by nano titanium dioxide, The Journal of The Textile Institute, 102, 4, 343–352.
  • 20. Mahmıanı, Y., (2016) Ftalosiyaninle kaplanmış titanyumdioksidin fotokatalitik uygulamaları, Doktora Tezi, İstanbul Teknik Üniversitesi, Fenbilimleri Enstitüsü, İstanbul
  • 21. Kung, H.H., (1989), Transition metal oxides: Surface chemistry and catalysis, Elsevier Amsterdam.
  • 22. Jackson, D., Hargreaves, J.S.J. (2009), Metal oxide catalysis. Wiley-VCH, Weinheim.
  • 23. Carp, O., Huisman, C.L., Reller, A., (2004), Photoinduced reactivity of titanium dioxide, Progress in Solid State Chemistry, 32, 33-177.
  • 24. Akpan, U.G., Hameed, B.H, (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalys: A review, Journal of Hazardous Materials, 170, 520-529.
  • 25. Alkaim, A.F., Kandiel, T.A., Hussein, F.H., Dillert, R., Bahnemann, D.W, Enhancing the photocatalytic activity of TiO2 by pH control: a case study for the degradation of EDTA, Catal. Sci. Technol., 3, 3216-3222.
  • 26. Li, Y., Zhang, W., Niu, J., Chen Y., (2012), Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal oxide nanoparticles. ACS Nano, 6, 6, 5164–5173.
  • 27. Gedik, G, Akşit A, Engin, B., Paksu, U., (2018) Production of metal oxide containing antibacterial coated textile material and ınvestigation of the mechanism of action, Fibers and Polymers, 19, 12, 2548-2563.
  • 28. Mather, R.R., Wardman, R.H., (2011) The chemistry of textile fibres, RSC Publishing, Cambridge
  • 29. Blackburn, R.S., (2005) Biodegradable and sustainable fibres, Woodhead Publishing, Cambridge
  • 30. Applerot, G., Lipovsky, A., Dror, R., Perkas, N., Nitzan, Y., Lubart, R., Gedanken, A. (2009). Enhanced antibacterial activity of nanocrystalline zno due to ıncreased ROS-mediated cell ınjury, Adv. Funct. Mater, 19, 842–852.
  • 31. Roubaud, V. Sankarapandi, S., Kuppusamy, P., Tordo, P., Zweier, J.L., (1997), Quantitative measurement of superoxide generation using the spin trap 5-(diethoxyphosphoryl)-methyl-1-pyrroline-Noxide, Analytical Biochemistry, 247, 404-411.
  • 32. Samouilov, A., Roubaud V., Kuppusamy, P., Zweier J. L., (2004), Kinetic analysis-based quantitation of free radical generation in EPR spin trapping. Analytical Biochemistry, 334, 145–154.
  • 33. Gedik, G., (2018), Endüstriyel teknik tekstillerin polimerik kaplamaları için antibakteriyel kimyasalların geliştirilmesi ve etki mekanizmasının incelenmesi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü Tekstil Mühendisliği Anabilim Dalı, Doktora Tezi, İzmir, Türkiye
  • 34. Zielińska, B., Grzechulska, J., Grzmil, B., Morawski, A.W., (2001) Photocatalytic degradation of Reactive Black 5: A comparison between TiO2-Tytanpol A11 and TiO2-Degussa P25 photocatalysts. Applied Catalysis B: Environmental, 35, 1, L1-L7
  • 35. Armstrong, D. (2010). Advanced protocols in Oxidative Stress II, Humana Press, New York
  • 36. Hua, J., Shao, M., Cheng, L., Wang, X.a, YanFu, Ma, D.D.D., (2009)., The fabrication of silver-modified silicon nanowires and their excellent catalysis in the decomposition of fluorescein sodium. Journal of Physics and Chemistry of Solids, 70,192–196
  • 37. Bardhan, M., Mandal, G., Ganguly T., (2011), Interaction and photodegradation characteristics of fluorescein dye in presence of ZnO nanoparticles. Journal of Nanoscience and Nanotechnology, 11, 3418–3426.
  • 38. Miura, T., Urano, Y., Tanaka, K., nagano, T., Ohkubo, K., Fukuzumi, S., (2003), Rational design principle for modulating fluorescence properties of fluorescein-based probes by photoinduced electron transfer, J. Am. Chem. Soc., 125, 8666- 8671
  • 39. Samouilov, A., Roubaud V., Kuppusamy, P., Zweier J. L., (2004), Kinetic analysis-based quantitation of free radical generation in EPR spin trapping, Analytical Biochemistry, 334, 145–154
  • 40. Lipovsky, A., Tzitrinovich, Z., Friedmann, H., Applerot, G., Lubart, A. G., Lubart, R., (2009), ESR study of visible lightinduced ros generation by nanoparticles of ZnO, J. Phys. Chem. C, 113, 15997–16001.
  • 41. Xu, F., Li, J., Zhu, T., Yu, S., Zuo, C., Yao, R., Qian, H., (2016), A new trick (hydroxyl radical generation) of an old vitamin (B2) for near-infrared-triggered photodynamic therapy, RSC Adv., 6, 102647–102656
  • 42. He, W., Liu, Y., Wamer, W.G., Yin, J., (2014), Electron Spin Resonance spectroscopy for the study of nanomaterial-mediated generation of reactive oxygen species, Journal of Food and Drug Analysis, 22, 49-63
  • 43. www.alibaba.com (Erişim tarihi: 24.03.2020)