KALSİYUM HİPOFOSFİT VE MAGNEZYUM HİPOFOSFİT EMDİRİLMİŞ JÜT ELYAF KATKILI POLİ(LAKTİK ASİT) BİYOKOMPOZİTLERİNİN ISIL VE GÜÇ TUTUŞURLUK ÖZELLİKLERİNİN İNCELENMESİ

Bu çalışmanın amacı kalsiyum hipofosfit (CHP) ve magnezyum hipofosfit (MHP) emdirilmiş jüt elyaf (JE) ile katkılandırılanpoli(laktik asit) (PLA) biyokompozitlerinin ısıl ve güç tutuşurluk özelliklerinin incelenmesidir. Bu amaç doğrultusunda ağ. %5 ve%10’luk CHP ve MHP çözeltileri ile ayrı ayrı işlem görmüş JE kurutulduktan sonra sabit oranda (ağ. %20) PLA içerisine eriyikharmanlama yöntemiyle ilave edilerek biyokompozitler üretilmiştir. Üretilen PLA biyokompozitlerin ısıl özellikleri termogravimetikanaliz (TGA), güç tutuşurluk özellikleri ise limit oksijen indeksi (LOI), dikey (UL-94V) ve yatay yanma (UL-94HB) testleri iledeğerlendirilmiştir. TGA test sonuçlarından, CHP ve MHP emdirilmiş JE’nin ilavesiyle PLA biyokompozitlerinin ısıl kararlılığı ve külkalıntısı miktarının arttığı ve bunlara bağlı olarak da güç tutuşurluk özelliklerinin iyileştiği tespit edilmiştir. LOI test sonuçlarından,JE’nin işlem gördüğü çözelti içerisindeki hipofosfitlerin yüzdesi arttıkça PLA biyokompozitlerinin LOI değerlerinin de arttığıgözlenmiştir. UL-94V ve UL-94HB test sonuçları ise ağ. %10’luk CHP çözeltisi ile işlem görmüş JE ile katkılandırılan PLAbiyokompozitinin en iyi güç tutuşurluk performasına sahip olduğunu göstermektedir.

INVESTIGATION OF THERMAL AND FLAMMABILITY PROPERTIES OF POLY(LACTIC ACID) BIOCOMPOSITES REINFORCED WITH CALCIUM HYPOPHOSPHITE AND MAGNESIUM HYPOPHOSPHITE IMPREGNATED JUTE FIBER

The aim of this study is to investigate the thermal and flammability properties of poly(lactic acid) (PLA) biocomposites reinforced with calcium hypophosphite (CHP) and magnesium hypophosphite (MHP) impregnated jute fiber (JE). For this purpose, biocomposites were produced by adding the jute fibers (JEs), which are treated separately with 5% and 10% CHP and MHP solutions and dried, to the PLA at a constant rate (20% wt) by melt blending method. Thermal properties of the PLA biocomposites produced were evaluated by thermogravimetic analysis (TGA), also their flammability properties were investigated by using limit oxygen index (LOI), vertical (UL-94V) and horizontal burning (UL-94HB) tests. As a result of the TGA tests, it was determined that the addition of JEs impregnated with CHP and MHP, the thermal stability and char residue amount of PLA biocomposites increased, and consequently the flame retardancy of the composites were also improved. From the LOI test results, it was observed that the LOI values of PLA biocomposites increased as the percentage of hypophosphites in the JE treatment solution increased. UL-94V and UL-94HB tests indicate that PLA biocomposite reinforced with JEs treated with 10% wt CHP has the highest flame retardancy performance.

___

  • 1. Oksman, K., Skrifvars, M., Selin J.F., (2003), Natural fibres as reinforcement in polylactic acid (PLA) composites, Compozites Science and Technology, 63(9), 1317-1324.
  • 2. Mngomezulu, M.E., John, M.J., Jacobs, V., Luyt, A.S., (2014), Review on flammability of biofibres and biocomposites, Carbohydrate Polymers, 111, 149-182.
  • 3. Suardana, N.P.G., Ku, M.S., Lim, J.K., (2011), Effects of diammonium phosphate on the flammability and mechanical properties of bio-composites, Materials and Design, 32(4), 1990- 1999.
  • 4. Chapple, S., Anandjiwala, R., (2010), Flammability of Natural Fiber-reinforced Composites and Strategies for Fire Retardancy: A Review, Journal of Thermoplastic Compsite Materials, 23(6), 871- 893.
  • 5. Saheb, D.N., Jog., J.P., (1999), Natural fiber polymer composites: A Review, Advances in Polymer Technology, 18(4), 351–363.
  • 6. Kozłowski, R., Władyka-Przybylak, M., (2008), Review Flammability and fire resistance of composites reinforced by natural fibers, Polymers for Advanced Technologies, 19, 446–453.
  • 7. Shumao, L., Jie, R., Hua, Y., Tao, Y., Weizhong, Y., (2009), Influence of ammonium polyphosphate on the flame retardancy and mechanical properties of ramie fiber-reinforced poly(lacticacid) biocomposites, Polymer International, 59(2), 242-248.
  • 8. Tang, G., Wang, X., Xing, W., Zhang, P., Wang, B., Hong, N., Yang, W., Hu, Y., Song, L., (2012), Thermal Degradation and Flame Retardance of Biobased Polylactide Composites Based on Aluminum Hypophosphite, Industrial & Engineering Chemistry Research, 51, 12009-12016.
  • 9. Jang, J.Y., Jeong, T.K., Oh, H.J., Youn, J.R., Song, Y.S., (2012), Thermal stability and flammability of coconut fiber reinforced poly(lactic acid) composites, Composites Part B: Engineering, 43(5), 2434-2438.
  • 10. Jandas, P.J., Mohanty, S., Nayak, S.K., (2013), Surface treated banana fiber reinforced poly (lactic acid) nanocomposites for disposable applications, Journal of Cleaner Production, 52, 392-401.
  • 11. Réti, C., Casetta, M., Duquesne, S., Bourbigot, S., Delobel, R., (2008), Flammability properties of intumescent PLA including starch and lignin, Polymers for Advanced Technologies, 19(6), 628– 635.
  • 12. Shukor, F., Hassan, A., Islam, M.S., Mokhtar, M., Hasan M., (2014), Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites, Materials and Design, 54, 425–429.
  • 13. Yu, T., Li, Y., Wang, Y., (2014), Flammability and Mechanical Properties of Ramie Reinforced Poly(lactic Acid) Composites by Using DOPO, Journal of Engineering Science, 10, 9-18.
  • 14. Yang, W., Jia, Z., Chen, Y., Zhang, Y., Si, J., Lu, H., Yang, B., (2015), Carbon nanotube reinforced polylactide/basalt fiber composites containing aluminum hypophosphite: thermal degradation, flame retardancy and mechanical properties, 5, 105869–105879.
  • 15. Yu, T., Tuerhongjiang, T., Sheng, C., Li, Y., (2017), Phosphoruscontaining diacid and its application in jute/poly(lactic acid) composites: Mechanical, thermal and flammability properties, Composites: Part A, 97, 60-66.
  • 16. Zhou, X., Li, J., Wu, Y., (2015), Synergistic effect of aluminum hypophosphite and intumescent flame retardants in polylactide, Polymer Advanced Techonologies, 26, 255-265.
  • 17. Tang, G., Zhang, R., Wang, X., Wang, B., Song, L., Hu, Y., Gong, X., (2013), Enhancement of Flame Retardant Performance of Bio- Based Polylactic Acid Composites with the Incorporation of Aluminum Hypophosphite and Expanded Graphite, 50, 255-269.
  • 18. Tang, G., Huang, X., Ding, H., Wang, X., Jiang, S., Zhou, K., Wang, B., Yang, W., Hu, Y., (2014), Combustion properties and thermal degradation behaviors of biobased polylactide composites filled with calcium hypophosphite, The Royal Society of Chemistry, 4, 8985-8993.
  • 19. Tang, G., Wang, X., Zhang, R., Wang, B., Hong, N., Hu, Y., Song, L., Gong, X., (2013), Effect of Rare Earth Hypophosphite Salts on the Fire Performance of Biobased Polylactide Composites, Industrial & Engineering Chemistry Research, 52, 7362−7372.
  • 20. Christa, F.B., Thomas, B., (2009), Sorption of alkaline earth matal ions Ca+2 and Mg+2 on lyocell fibers, Carbohydrate Polymers, 76, 123-128.
  • 21. Furtana, Ş., Mutlu, A., Doğan, M., (2020), Thermal stability and flame retardant properties of calcium- and magnesiumhypophosphite- finished cotton fabrics and the evaluation of interaction with clay and POSS nanoparticles, Journal of Thermal Analysis and Calorimetry, 139, 3415–3425.
  • 22. Basak, R.K., Saha, S.G., Sarkar, A.K., Saha, M., Das, N.N., Mukherjee, A.K., (1993), Thermal Properties of Jute Constituents and Flame Retardant Jute Fabrics, Textile Research Journal, 62(11), 658-666.
  • 23. Suardana, N.P.G., Ku, M.S., Lim, J.K., (2011), Effects of diammonium phosphate on the flammability and mechanical properties of bio-composites, Materials and Design, 32, 1990 -1999.
  • 24. Liokadis, S.E., Statheropoulos, M.K., Tzamtzis, N.E., Pappa, A.A., Parissakis, G.K., (1996), The effect of salt and oxide-hydroxide additives on the pyrolysis of cellulose and Pinus halepensis pine needles, Thermochimica Acta, 278, (99-108).
  • 25. Matkó, S., Toldy, A., Keszei, S., Anna, P., Bertalan, G., Marosi, G., (2005), Flame retardancy of biodegradable polymers and biocomposites, Polymer Degradation and Stability, 88, 138-145.
  • 26. Atabek, L., Tayfun, U., Hancer, M., Dogan, M., (2019), The flameretardant effect of calcium hypophosphite in various thermoplastic polymers, Fire and Materials, 43, 294-302.
  • 27. Shumao, L., Jie, R., Hua, Y., Tao, Y., Weizhong, Y., (2010), Influence of ammonium polyphosphate on the flame retardancy and mechanical properties of ramie fiber‐reinforced poly(lactic acid) biocomposites, Polymer International, 59, 242-248.
  • 28. Li, Q., Li, B., Zhang, S., Lin, M., (2012), Investigation on Effects of Aluminum and Magnesium Hypophosphites on Flame Retardancy and Thermal Degradation of Polyamide 6, Journal of Applied Polymer Science, 125, 1782–1789.