HALOKROMİK AKILLI TEKSTİL YÜZEYLERİ VE TIBBİ AMAÇLI KULLANIM OLANAKLARI

Akıllı tekstiller, son yıllarda birçok araştırmacının ilgisini çeken konulardan birisidir. Dış ortamdaki değişmelere bağlı olarak renk değiştiren kromik tekstiller ise; akıllı tekstil malzemelerinin bir alt kolu olup, bu alanda yapılan çalışmalar yoğunlaşarak artmıştır. Tekstil malzemeleri; mukavemet, esneklik, hafiflik, biyouyumluluk gibi avantajlara sahip olmasından dolayı uzun yıllardır sağlık sektörünün talep ettiği ihtiyaçları karşılamaktadır. Tekstil malzemelerine gerek konvansiyonel yöntemler gerekse nanoteknolojik uygulamalar kullanılarak halokromik özellik kazandırılabilir. Halokromik tekstiller, pH değiştiğinde renk değiştiren malzemelerdir ve diğer kromik tekstillere göre daha az bilinmekle birlikte, tıbbi alanda giderek artan bir kullanım potansiyeli oluşturmaktadır. Bu makalede; tıbbı tekstiller ve akıllı tekstillerin küresel pazar profili özetlenerek, halokromik tekstillerin üretimine ve özellikle tıbbi alandaki kullanımına yönelik araştırmalara yer verilmiştir.

HALOCROMIC SMART TEXTILE SURFACES AND THEIR MEDICAL USAGE POSSIBILITIES

In recent years, many researchers have been interested in smart textiles. The chromic textiles, being a subclass of intelligent textile materials, change their colors depending on environmental changes and the studies concerning this subject has increased in recent years. Textile materials have many advantages such as strength, flexibility, lightness, and biocompatibility so that they have been meeting the needs of the healthcare industry for many years. Halochromic properties could be given to the textile materials either by conventional methods or by using nanotechnological applications. Although halochromic textiles which change color with changing pH, are rarely known than other chromic textiles; they present an increasing usage potential in the future of medical textiles. In this article; the global market profile of medical textiles and intelligent textiles were summarized, and the researches of halochromic textiles concerning their production and especially their medical uses were outlined.

___

  • Swiss Textiles, Technical Textiles Swiss Innovations as Solutions to Global Challenges, http://www.swisstextiles.ch/cms/upload/ dokumente/Publikationen/Brochure_Technical_Textiles_Web.pdf, 5 Temmuz 2018.
  • Rajendran, S.,Anand, S.C.,Rigby, A.J., (2016), Handbook of Technical Textiles - 2nd Edition, Woodhead Publishing, Cambridge.
  • Grand View Research, Medical Textiles Market Analysis by Raw Material (Non-woven, Knitted, Woven), by Application (Implantable Goods, Non-implantable Goods, Healthcare & Hygiene Products) and Segment Forecasts to 2022, https://www.grandviewresearch.com/industry-analysis/medical-textiles-market, 28 Haziran 2018.
  • Prlog Press Release Distribution, MedMarket Diligence, https://www.prlog.org/12521207-global-wound-management-technologies-driving-22-4-billion-market-by-2024-according-to-new-medmarket-diligence-report.html, 28 Haziran 2018.
  • Koncar, V., (2016), Smart Textiles and Their Applications, Woodhead Publishing, Cambridge.
  • Rajendran, S., (2009), Advanced Textiles for Wound Care, Woodhead Publishing, Cambridge.
  • Markets and Markets, Smart Textiles Market by Type, Function, Industry & Geography - Global Forecast to 2020, http://www.marketsandmarkets.com/Market-Reports/smart-textiles-market-13764132.html, 28 Ocak 2018.
  • Langenhove, L., (2015), Advances in Smart Medical Textiles, Woodhead Publishing, İngiltere.
  • Tractica, Smart Clothing and Body Sensor Shipments to Reach 119 Million Units Annually by 2022, https://www.tractica.com/ newsroom/press-releases/smart-clothing-and-body-sensor-shipments-to-reach-119- million-units-annually-by-2022/, 28 Haziran 2018.
  • Mecņika, V., Hoerr, M., Krievins, I., (2014), Smart Textiles for Healthcare: Applications and Technologies, Rural Environment. Education. Personality, 7-8 Şubat 2014, Jelgava.
  • Schueren, L.V., Clerck, K.D., (2010), The Use of pH-indicator Dyes for pH-sensitive Textile Materials, Textile Research Journal, 80(7), 590-603.
  • Schueren, L.V., Mollet, T., Ceylan, Ö., Clerck, K.D., (2010), The Development of Polyamide 6.6 Nanofibres with a pH-Sensitive Function by Electrospinning, European Polymer Journal, 46(12), 2229-2239.
  • Agarwal, A., Raheja, A., Natarajan, T.S, Chandra, T.S., (2012), Development of Universal pH Sensing Electrospun Nanofibers, Sensors and Actuators B:Chemical, 161(1), 1097-1101.
  • Schueren, L.V, Hemelsoet, K., Speybroeck, V., Clerck, K.D., (2012), The Influence of a Polyamide Matrix on the Halochromic Behaviour of the pH-Sensitive Azo Dye NitrazineYellow, Dyes and Pigments, 94(3), 443-451.
  • Schueren, L.V., Meyer, T., Steyaert, I., Ceylan, Ö., Hemelsoet, K., Speybroeck, V., Clerck, K.D., (2013), Polycaprolactone and Polycaprolactone/Chitosan Nanofibers Functionalised with the pH-Sensitive Dye Nitrazine Yellow, Carbohydrate Polymers, 91(1), 284-293.
  • Pakolpakçıl, A., (2013), Akıllı Tekstillerde Kullanılmak Üzere Halokromik Boyalarla Boyanmış Poliamid 6,6 Kumaşın Yaş Haslıklarının İncelenmesi, Yüksek Lisans Tezi, Namık Kemal Üniversitesi, Tekirdağ.
  • Mattila, H., (2006), Intelligent Textile and Clothing, Woodhead Publishing, Cambridge.
  • Hali Industrial Co.Ltd., Thermochromic Pigment, http://www.hali-pigment.com/html_products/ Thermochromic-pigment-21.html# image_4, 15 Nisan 2018.
  • Royal Society of Chemistry, Colour Changing Fabrics Without Weaving, http://www.rsc.org/Publishing/ChemTech/Volume/2010/ 11/colour_changing_fabrics.asp, 15 Aralık 2017.
  • Seeboth, A., Loetzsch, D., Ruhmann, R., (2011), Piezochromic Polymer Materials Displaying Pressure Changes in Bar-Ranges, American Journal of Materials Science, 1(2), 139-142.
  • Schueren, L.V., Clerck, K.D., (2012), Coloration and Application of pH-Sensitive Dyes on Textile Materials, Coloration Technology, 128(2), 82-90.
  • Avella-Oliver, M., Morais, S., Puchades R., Maquieira, Á., (2016), Towards Photochromic and Thermochromic Biosensing, Trends in Analytical Chemistry, 79, 37–45.
  • Shuiping, L., Lianjiang, T., Weili, H., Xiaoqiang, L., Yanmo C., (2010), Cellulose Acetate Nanofibers with Photochromic Property: Fabrication and Characterization, Materials Letters, 64, 2427– 2430.
  • Siegel, A.C., Phillips, S.T., Wiley, B., Whitesides, G.M., (2009), Thin, Lightweight, Foldable Thermochromic Displays on Paper, Lab on a Chip, 9(19), 2775-2781.
  • Laurent, H.B., Dürr, H. (2001), Organic Photochromism, Iupac Pure and Applied Chemistry, 73(4), 639- 665.
  • Shindy, H.A., El-Maghraby, M.A., Eissa, F.M., (2009), Synthesis, Absorption Spectra Studies, Solvatochromism and Halochromism of Polymethine Cyanine Dyes, Coloration Technology, 125, 104-110.
  • Bamfield, P. (2001), Chromic Phenomena the Technological Applications of Colour Chemistry, The Royal Society of Chemistry, Cambridge.
  • Peters, A.T. , Freeman H.S., (1995), Modern Colorants: Synthesis and Structure, Springer Netherlands, Cornwall.
  • Glover, B.J., Martin, C.(2012), Anthocyanins, Current Biology, 22(5), 147-150.
  • Ahmadiani, N., Robbins, R.J., Collins, T.M., Giusti, M.M., (2016), Molar Absorptivity (Ɛ) and Spectral Characteristics of Cyanidin-based Anthocyanins from Red Cabbage, Food Chemistry, 197, 900–906.
  • Hepsağ, F., Hayoğlu, İ., Hepsağ, B., (2012), Karadut Meyvesinin Antosiyanin İçeriği ve Antosiyaninlerin Gıda Sanayinde Renk Maddesi Olarak Kullanım Olanakları, Gıda Teknolojileri Elektronik Dergisi , 7(1), 9-19.
  • Wang, L., Stoner, G., (2008), Anthocyanins and their Role in Cancer Prevention, Cancer Letters, 269, 281–290.
  • Saldamlı, İ., (2014), Gıda Kimyası, Hacettepe Yayınevi, Ankara.
  • Keleş, Y., (2015), Antosiyanin Pigmentlerin Biyokimyası ve Analizi, Türk Bilimsel Derlemeler Dergisi, 8(1), 19-25. Schueren L.V., (2008), pH-sensitieve Textielmaterialen als Nieuwe, M.Sc. Thesis, Ghent University, Ghent.
  • Meyer, T.D., Steyaert, I., Hemelsoet, K, Hoogenboom, R., Speybroeck, V.V., Clerck, K.D., (2016), Halochromic Properties of Sulfonphthaleine Dyes in a Textile Environment: The Influence of Substituents, Dyes and Pigments, 124, 249-257.
  • Staneva, D., Betcheva, R., (2007), Synthesis and Functional Properties of New Optical pH Sensor Based on Benzo [de]anthracen-7-one Immobilized on the Viscose, Dyes and Pigments, 74(1), 148-153.
  • Carmona, N., Bouzas, V., Jimenez, F., Plaza, M., Perez, L., Garcia, M.A., Villegas, M.A., Llopis, J., (2010), Cobalt (II) Environment Characterization in Sol–Gel Thermochromic Sensors, Sensors and Actuators B: Chemical, 145, 139-145.
  • Schueren, L.V., Clerck, K.D., Brancatelli, G., Rosace, G., Damme, E., Vos, W., (2012), Novel Cellulose and Polyamide Halochromic Textile Sensors Based on the Encapsulation of Methyl Red into a Sol-gel Matrix, Sensors and Actuators: B. Chemical, 162(1), 27– 34.
  • Sun, X., Branford-White, C., Yu, Z., Zhu, L., (2015), Development of Universal pH Sensors Based on Textiles, Journal of Sol-Gel Science and Technology, 74, 641–649.
  • Steyaert I., Vancoillie, G., Hoogenboom, R., Clerck K. D., (2015), Dye Immobilization in Halochromic Nanofibers Through Blend Electrospinning of a Dye-containing Copolymer and Polyamide-6, Polymer Chemistry , 6, 2685-2694.
  • Sharifabad, A.N., Bahrami S.H., (2016), Halochromic Chemosensor from Poly(acrylonitrile)/Phenolphthalein Nanofibers as pH Sensor, IEEE Sensors Journal, 16(4), 873-880
  • Schoolaert E., Steyaert, I., Vancoillie G., Geltmeyer J., Lava K., Hoogenboom R., Clerck, K.D., (2016), Blend Electrospinning of Dye-functionalized Chitosan and Poly(e-caprolactone): Towards Biocompatible pH-sensors, Journal of Materials Chemistry B, 4(26), 4493-4622.
  • Prietto, L., Pinto, V.Z., Halal S.L.M.E., Morais, M.G.D., Costa, J.A.V., Lim, L.T., Dias, A.R.G., Zavareze, E.D.R., (2018), Ultrafine Fibers of Zein and Anthocyanins as Natural pH Indicator, Journal of the Science of Food and Agriculture, 98, 2735-2741.
  • Schueren, L. V., Clerck, K.D., (2013), Halochromic Textile Materials as Innovative pH-sensors, Advances in Science and Technology, 80, 47-52.
  • Ferrara, M., Bengisu, M., (2014), Materials that Change Color: Smart Materials, Intelligent Design. Milano: Springer, London.
  • Coyle, S., Lau, K. T., Moyna, N., O'Gorman, D., Diamond, D., Di Francesco, F., Costanzo, D., Salvo, P., Trivella, M.G., De Rossi D., Taccini, N., Paradiso, R., Porchet, J.A., Ridolfi, A., Luprano, J., Chuzel, C., Lanier, T., Revol-Cavalier, F., Schoumacker, S., Mourier, V., Chartier, I., Convert, R., De-Moncuit, H., Bini, C., (2010), BIOTEX-biosensing Textiles for Personalised Healthcare Management, IEEE Transactions on Information Technology in Biomedicine, 14(2), 364-370.
  • Schneider, L.A., Korber, A., Grabbe, S., Dissemond, J. (2007), Influence of pH on Wound-Healing: A New Perspective for Wound-Therapy?, Archives of Dermatological Research, 298, 413-420.
  • Gethin, G. (2007), The Significance of Surface pH in Chronic Wounds, Wounds UK, 3(3), 52-56
  • Leveen, H., Falk, G., Borek, B., Diaz, C., Lynfield, Y., Wynkoop, B.J., Mabunda, G.A., Rubricius, J.L., Christoudias, G.C., (1973), Chemical Acidification of Wounds An Adjuvant to Healing and the Unfavourable Action of Alkalinity and Ammonia, Annals of Surgery, 178(6), 745-750.
  • Romanelli, M., Gaggio, G., Coluccia, M., Rizzello, F., Piaggesi, A. (2002), Technological Advances in Wound Bed Measurements, Wounds, 14(2), 58-66.
  • Fraunhofer Research Institution, Dressing Indicates Infections, http://www.fraunhofer.de/en/ press/research-news/2010/11/ dressing-indicates-infections.html, 17 Nisan 2018.
  • Coomber A., (2018), Patent number: 9855364,Wound Dressing Materials Incorporating Anthocyanins Derived from Fruit or Vegetable Sources.
  • Kassal, P., Zubaka, M., Scheiplb, G., Mohr, G.J., Steinberg, M.D., Steinberg, I.M. (2017), Smart Bandage with Wireless Connectivity for Optical Monitoring of pH , Sensors and Actuators B , 246, 455-460.
  • Schaude, C., Fröhlich, E., Meindl, C., Attard, J., Binder, B., Mohr, G.J., (2017), The Development of Indicator Cotton Swabs for the Detection of pH in Wounds, Sensor, 17, 1-13.
  • Morris, D., Schazmann, B., Wu, Y., Coyle, S., Brady, S., Fay, C., Hayes, J., Lau, K. T., Wallace, G., Diamond, D., (2008), Wearable Technology for Bio-Chemical Analysis of Body Fluids During Exercise, 30th Annual International IEEE EMBS Conference, 20-24 Ağustos 2008, Vancouver, Canada.
  • Caldara, M., Colleoni, C., Guido, E., Re, V., Rosace, G., (2016), Optical Monitoring of Sweat pH by a Textile Fabric Wearable Sensor Based on Covalently Bonded Litmus-3 glycidoxypropyltrimethoxysilane Coating, Sensors and Actuators B, 222, 213–220.
  • Pasche, S., Schyrr, B., Wenger, B., Scolan, E., Ischer, R., Voirin, G., (2013), Smart Textiles with Biosensing Capabilities, Advances in Science and Technology, 80, 129-135.
  • Devarayan, K., Kim, B.S., (2015), Reversible and Universal pH Sensing Cellulose Nanofibers for Health Monitor, Sensors and Actuators B:Chemical, 209, 281-286.
  • Kurecic M., Hribernik, S., Virant, N., Ojstršek, A., Smole, M.S., Kleinschek, K.S., (2016), Polysaccharide Based Nanofibers with pH-sensitive Function, Tekstil, 65(5-6), 166-170.
  • Steyaert I., (2011), Hybrid Electrospun Structures for pH-Sensitive Wound Dressings, M.Sc. Thesis, Ghent University, Ghent.