Aramid ve karbon lif takviyeli termoplastik kompozit kirişlerin impuls girdi altındaki titreşim davranışları

Günümüzde cam, karbon, aramid lif v.b. takviyeli kompozit malzemelerin kullanımı giderek yaygınlaşmaktadır. Özellikle aramid ve karbon lif düşük yoğunluğa, yüksek darbe dayanımı, yüksek aşınma dayanımı, yüksek yorulma dayanımına, titreşim sönümleme özelliğine sahiptirler.Bu özelliklerinden dolayı, özellikle aramid lifler balistik koruma uygulamalarında (askeri kasklar, kurşun geçirmez yelekler vb.), uzay ve uçak sanayinde, otomotiv sanayinde bir çok uygulama alanına sahiptir. Termoplastik malzemeler ise, üstün kırılma tokluğu, raf ömrünün uzun olması, geri dönüşebilirlik özelliği, yüksek sertlik ve darbe dayanımı gibi özelliklerinden dolayı termosetlere göre daha çok tercih edilmektedir. Bu çalışmada, farklı açı oryantasyonlarına sahip aramid ve karbon lif içeren kıvrımsız kumaş takviyeli termoplastik matrisli kompozit malzemeler sıcak presleme yöntemi ile üretilip, üretilen malzemelerden kiriş numuneleri çıkarılmıştır. Kirişler darbe yüklerine (impuls girdi) maruz bırakılıp, bu yük etkisinde titreşim davranışları incelenmiştir.

Vibration behavior of aramid and carbon fiber reinforced thermoplastic composite beams under impulse input

Nowadays, due to their low density, high impact strength, high wear strength, high fatigue strength and high vibration damping properties, the use of glass, carbon, aramid fiber reinforced composite materials have rapidly grown. Among them especially aramid fiber has been popularly used in ballistic protection applications (military helmets, bulletproof vests etc) in space and airplane industry and in automotive industry. On the other hand, thermoplastic materials have been preferred much more in comparison to thermosets due to their superior properties such as crack fullness, long shelf life, biodegradability, high hardness and impact strength. In this study, aramid and carbon fiber reinforced thermoplastic composite materials with different fibre orientation angles, were fabricated with hot pressing method. Beam samples were taken out from the fabricated composites. Beams were subjected to impact loads (impulse input) and their vibration behaviours were investigated.

___

  • 1. Wang Y., Li J., Do B.P., (1995), Properties of composite laminates reinforced with E-glass multiaxial non-crimp fabrics, Journal of Composite Materials, 29(17), 2317.
  • 2. Drapier S., Wisnom R.M.,(1999), Finite-element investigation of the compressive strength of non-crimp-fabric-based composites, Composite Science and Technology, 59(8), 1287.
  • 3. Drapier S., Wisnom R.M.,( 1999), A finite-element investigation of the interlaminar shear behaviour of non-crimp-fabric-based composites, Composite Science and Technology, 59(16), 2351.
  • 4. Crookston J.J., Long A.C., Jones I.A., (2002), A summary review of mechanical properties prediction methods for textile reinforced polymer composites. In Proceedings of the 10th European Conference on Composite Materials, Brugge, Belgium..
  • 5. Roth Y.C., Himmel N.,(2002), Theoretical model and experimental investigation onthe effect of stitching on the in-plane stiffness of CFRP, In Proceedings of the 10th European Conference on Composite Materials, Brugge, Belgium.
  • 6. Sjogren A., Edgren E, Aps L.E., (2004), Effects of stitching pattern on themechanical properties of non-crimp fabric composites, In Proceedings of the 11th European Conference on Composite Materials (ECCM11), Rhodos, Greece.
  • 7. Mikael J., Peter G., (2000), Broad-band transient recording and characterization of acoustic emission events in composite laminates, Composite Science and Technology, 60,2803.
  • 8. Huang Y., Young R.J., (1995), Effect of fibre microstructure upon the modulus of PAN- and pitch-based carbon fibres, Carbon, 33(2): 97.
  • 9. Bibo G.A., Hogg P.J., Kemp M., (1997), Mechanical characterisation of glass and carbon fibre reinforced composites made with non-crimp fabrics, Composite Science and Technology, 57,1221.
  • 10. Truong T.C., Vettori M., Lomov S., Verpoest I., (2005), Carbon compositesbased on multi-axial multi-ply stitchedpreforms. Part 4. Mechanical properties of composites and damage observation, Composite Part A-Appl. S.,36(9), 1207.
  • 11. Karger-Kocsis J.,(1998), Towards assessment of reliable mechanical properties for knitted fabric-reinforced thermoplastic composites, Advanced Composites Letters, 7(2), 39.
  • 12. Cuong N.K., Maekawa Z., (1998), Fabrication of aramidfiber knitted fabric reinforced polypropylene composites, Advanced Composite Letters, 7(3), 75.
  • 13. Ramakrishna S., Hamada H., Rydin R., Chou T.W., (1995), Impact damage resistance of knitted glass-fiber fabric reinforced polypropylene composites, Science and Engineering of Composite Materials, 1995; 4(2): 61.
  • 14. Meyer B.C., Katsiropoulos Ch.V., Pantelakis Sp.G., (2009), Hot forming behavior of non-crimp fabric Peek/C thermoplastic composites, Composite Structures, 90(2), 225.
  • 15. Tanaka K., Yamada M., Shinora M., Katayama T., (2010), Effects of Stitching parameters of non-crimp fabrics on the mechanical properties of CFRTP, 9th International Conference on Fracture and Damage Mechanics, Japan, 452-453,301.
  • 16. Hufenbach W., Böhm R., Thieme M., Winkler A., Mâder E., Rausch J., Schade M., (2011), Polypropylene/glass fibre 3D-textile reinforced composites for automotive applications, Materials&Design, 32(3), 1468.
  • 17. Spiros P., Christos K., Bernd M., (2011), A study on the potential of NCF thermoplastic composites for use in aeronautic structural applications, Journal of Polymer Engineering, 31(2-3), 159.
  • 18. Erden S, Sever K, Seki Y, Sarikanat M., (2010), Enhancement of the mechanical properties of glass/polyester composites via matrix modification glass/polyester Composite, 11(5), 732.
Tekstil ve Mühendis-Cover
  • ISSN: 1300-7599
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1987
  • Yayıncı: TMMOB Tekstil Mühendisleri Odası