INVESTIGATION OF ANTIBACTERIAL ACTIVITY OF FOOTWEAR LEATHER OBTAINED FROM DIFFERENT TANNING

In present study, antibacterial properties of leathers prepared by different tanning processes such as chromium, vegetable (Mimosa, Quebracho) and wet-white (Modified glutaraldehyde) were analyzed by qualitative and quantitative tests. Also, the surface morphology of leathers was imaged by Scanning Electron Microscopy (SEM). Staphylococcus aureus ATCC 33862, Escherichia coli ATCC 25922 and Bacillus cereus NRRL-B-3711 as test microorganisms were used. According to results, the antibacterial activity of the leather samples with treated vegetable (quebracho, mimosa) was higher than with treated chromium and wet-white. Moreover, the leathers with treated vegetable were effective against S. aureus. We considered that the antibacterial properties of leathers can be improved by various plant extracts. According to the SEM images, while there were small pores in the vegetable and wet-white tanned leathers, there were large pores in the chromium tanned leathers. SEM data were verified by imageJ analysis. 

___

  • Referans 1 Joseph K, Nithya N. (2009). Material flows in the life cycle of leather. J. Clean. Prod., 17, 676-682. https://doi.org/10.1016/j.jclepro.2008.11.018.
  • Referans 2 Sivakumar V, Swaminathan G, Rao PG, Ramasami T. (2008). Influence of ultrasound on diffusion through skin/leather matrix. Chem. Eng. Process, 47(12), 2076-2083. https://doi.org/10.1016/j.cep.2007.10.020.
  • Referans 3 Covington AD. (1997). Modern tanning chemistry. Chem. Soc. Rev., 26, 111-126. https://doi.org/10.1039/cs9972600111.
  • Referans 4 Maestre-López IM, Payà-Nohales FJ, Cuesta-Garrote N, Arán-Ais F, Martínez-Sánchez MA, Orgiles-Barceló C, Bertazzo M. (2015). Antimicrobial effect of coated leather based on silver nanoparticles and nanocomposites: synthesis, characterisation and microbiological evaluation. J. Biotechnol. Biomater, 5(1), 1-10. http://dx.doi.org/10.4172/2155-952X.1000171.
  • Referans 5 Lkhagvajav N, Koizhaiganova M, Yasa I, Celik E, Sari O. (2015). Characterization and antimicrobial performance of nano silver coatings on leather materials. Braz. J. Microbiol, 46(1), 41–48. https://doi.org/10.1590/S1517-838220130446.
  • Referans 6 Chirila C, Berechet MD, Deselnicu V. (2016). Thyme essential oil as natural leather preservative against fungi. ICAMS. https://doi.org/10.24264/icams-2016.ii.6.
  • Referans 7 Gutarowska B. (2013). Niszczenie materiałów technicznych przez drobnoustroje. LAB Laboratoria, Badania, 18(2), 10-14. (in Polish)
  • Referans 8 Vouga M, Greub G. (2015). Emerging bacterial pathogens: the past and beyond. Clin. Microbiol. Infect., 22, 12–21. https://doi.org/10.1016/j.cmi.2015.10.010.
  • Referans 9 Bielak E, Sygula-Cholewinska J. (2017). Antimicrobial effect of lining leather fatliquored with the addition of essential oils. Biotechnology and Food Science, 81(2), 149–157. Retrieved from http://www.bfs.p.lodz.pl/get_file.php?fileId=168.
  • Referans 10 Jeffcoate WJ, Harding KG. (2003). Diabetic foot ulcers. The Lancet, 361, 1545-1551. https://doi.org/10.1016/S0140-6736(03)13169-8.
  • Referans 11 Luo Q, Gao H, Peng L, Liu G, Zhang Z. (2016). Synthesis of PEGylated chitosan copolymers as efficiently antimicrobial coatings for leather. J Appl Polym Sci, 133 (22),1–7. https://doi.org/10.1002/app.43465.
  • Referans 12 Gunalan S, Sivaraj R, Rajendran V. (2012). Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Pro Nat Sci-Mater, 22(6), 693–700. https://doi.org/10.1016/j.pnsc.2012.11.015.
  • Referans 13 Gaidau C, Ignat M, Iordache O, Popescu LM, Piticescu RM, Ditu LM, Ionescu M. (2018). ZnO nanoparticles for antimicrobial treatment of leather surface. Rev Chim, 69(4), 767–771.
  • Referans 14 Velmurugan P, Shim J, Bang KS, Oh BT. (2016). Gold nanoparticles mediated coloring of fabrics and leather for antibacterial activity. J Photo Biol, 160, 102–109. https://doi.org/10.1016/j.jphotobiol.2016.03.051.
  • Referans 15 Majidnia Z, Idris A, Valipour P. (2013). Evaluation of antibacterial properties of leather treated with silver nanoparticles. Jur Tek, 60, 5-8. https://doi.org/10.11113/jt.v60.1385.
  • Referans 16 John F, Sargent Jr. (2016). Nanotechnology: A policy primer. Congressional Research Service. http://eprints.internano.org/2357/1/Nanotechnology_A_Policy_Primer-Congressional_Research_Service.pdf.
  • Referans 17 Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, Nouwen JL. (2005). The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis, 5, 751–762. https://doi.org/10.1016/S1473-3099(05)70295-4.
  • Referans 18 Coates R, Moran J, Horsburgh MJ. (2014). Staphylococci: colonizers and pathogens of human skin. Future Microbiol, 9, 75–91. https://doi.org/10.2217/fmb.13.145.
  • Referans 19 Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. (2015). Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev, 28(3), 603-661. https://doi.org/10.1128/ CMR.00134-14 .
  • Referans 20 Dryden MS. (2010). Complicated skin and soft tissue infection. J Antimicrob Chemother, 65 Suppl 3, iii35–44. https://doi.org/10.1093/jac/dkq302.
  • Referans 21 Olszewski WL, Jamal S, Manokaran G, Pani S, Kumaraswami V, Kubicka U, Lukomska B, Dworczynski A, Swoboda E, Meisel-Mikolajczyk F. (1997). Bacteriologic studies of skin, tissue fluid, lymph, and lymph nodes in patients with filarial lymphedema. Am J Trop Med Hyg, 57(1), 7–15. https://doi.org/10.4269/ajtmh.1997.57.7.
  • Referans 22 Nawaz HR, Solangi BA, Zehra B, Nadeem U. (2011). Preparation of nano zinc oxide and its application in leather as a retanning and antibacterial agent. Canadian Journal on Scientific and Industrial Research, 2(4), 164-170.