BOYAMA ATIK SUYUNUN ULTRASESLİ VE ULTRASESSİZ FENTON OKSİDASYONU İLE ARITILMASI

Bu çalışmada, tekstil boyama suyundaki C.I. Reactive Red 141’in (RR141)’in iyon değişimi ve hidrotermal sentez metodu ile hazırlanmış demir içeren ZSM-5 zeolit katalizörleri üzerinde ıslak peroksit oksidasyonunu (CWPO) ile giderilmesi incelenmiştir. İyon değişimli FeZSM-5 katalizörü üzerinde, 0.5 kütle yüzdesindeki boyama atık suyu için, yüksek boya derişimli atık sulara göre daha yüksek renk giderimi, %18.3 , ve daha yüksek aromatik giderim, %17.6, sonuçları elde edilmiştir. Reaksiyon karışımına eklenen H2O2miktarı (5 mmol’e kadar) ile renk giderimi artmıştır. 0.5 kütle yüzdesindeki boyama atık suyu için ultrases katkılı CWPO ile renk giderimi %15.7’den %18.6’ya çıkmıştır. Bununla birlikte, atık sudaki boya derişimi arttıkça ultrasesin renk giderimi üzerindeki olumlu etkisi kaybolmuştur

THE TREATMENT OF WASTE WATER OF DYEING BY FENTON OXIDATION IN PRESENCE AND ABSENCE OF ULTRASOUND

In this study, degradation of Reactive Red 141 (RR141) present in textile dyeing waste water was investigated by catalytic wet hydrogen peroxide oxidation over iron-containing ZSM-5 zeolite catalysts prepared by ion-exchange and hydrothermal synthesis methods. Higher decolorization (18.3%) and degradation (17.6%) degrees were obtained by waste water of dyeing with 0.5 wt% over ion-exchanged FeZSM-5 catalyst than those with waste water of dyeings in high dye concentration. Color removal was increased with H2O2 amount (up to 5 mmol) added to the reaction mixture. Decolorization degree increased from 15.7% to 18.6% in the combination of CWPO and ultrasound for waste water of dyeing with 0.5 wt%. However, as the concentration of dye in the waste water increased, the positive effect of ultrasound on decolorization disappeared

___

  • 1. Stolyarova, I.V., Kovban, I.B., Prikhod’ko, R.V., Kushko, A.O., Sychev, M.V. and Goncharuk, V.V., 2007, “Relationship between the Catalytic Behavior of Zsm-5 Zeolites in Oxidative Degradation of Dyes and Nature of Their Active Centers”, Russian J. of Applied Chemistry, Vol. 80(5), pp: 746-753.
  • 2. Racyte, J., Rimeika, M., 2008, “UV/H2O2-Advanced Oxidation Processes Possibilities for Textile Reactive Dyes Decolorization”, Environmental Engineering, 7th Int. Conf., 22-23 May, Vilnius, Lithuania, pp: 684-689.
  • 3. Bell, J. and Buckley, C.A., 2003, “Treatment of A Textile Dye In The Anaerobic Baffled Reactor”, Water SA, Vol. 29(2), pp: 129-134.
  • 4. Netpradit, S., Thiravetyan, P. and Towprayoon, S., 2004, “Adsorption of Three Reactive Dyes By Metal Hydroxide Sludge: Effect Of Temperature, pH And Electrolytes”, J. Colloid and Interface Science, Vol. 270(2), pp: 255-261.
  • 5. Dolphen, R., Sakkayawong, N., Thiraventyan, P. and Nakbanpote, W., 2007, “Adsorption of Reactive Red 141 from Waste Water onto Modified Chitin”, J. Hazardous Materials, Vol. 145(1-2), pp: 250-255.
  • 6. Nunez, L., Garcia-Hortal, J.A. and Torrades, F., 2007, “Study Of Kinetic Parameters Related To Decolourization And Mineralization Of Reactive Dyes From Textile Dyeing Using Fenton And Photo-Fenton Processes”, Dyes and Pigments, Vol. 75(3), pp: 647-652.
  • 7. Garcia-Montano, J., Perez-Estrada, L., Oller, I., Maldonado, M.I., Torrades, F. and Peral, J., 2008, “Pilot Plant Scale Reactive Dyes Degradation By Solar Photo-Fenton And Biological Processes”, J. Photochemistry and Photobiology A: Chemistry, Vol. 195(2-3), pp: 205-214.
  • 8. Arslan, I., Balcioğlu and I.A., Bahnemann, D.W., 2000, “Advanced Chemical Oxidation Of Reactive Dyes In Simulated Dyehouse Effluents By Ferrioxalate-Fenton/UV-A And TiO2/UV-A Processes”, Dyes and Pigments, Vol. 47(3), pp: 207-218.
  • 9. Dutta, K., Mukhopadhyay, S., Bhattacharjee, S. and Chaudhuri, B., 2001, “Chemical Oxidation of Methylene Blue Using A Fenton-Like Reaction”, J. Hazardous Materials, Vol. 84(1), pp: 57-71.
  • 10. Torrades, F., Garcia-Montano, J., Garcia-Hortal, J.A., Nunez, L., Domenech, X. and Peral, J., 2004, “Decolorization and Mineralization of Homo- And Hetero-Bireactive Dyes under Fenton and Photo-Fenton Conditions”, Color. Technol., Vol. 120, pp: 188-194.
  • 11. Guedes, A.M.F.M., Madeira, L.M.P., Boaventura, R.A.R. and Costa, C.A.V., 2003, “Fenton Oxidation of Cork Cooking Wastewater Overall Kinetic Analysis”, Water Research, Vol. 37(13), pp: 3061-3069.
  • 12. Fajerwerg, K. and Debellefontaine, H., 1996, “Wet Oxidation Of Phenol By Hydrogen Peroxide Using Heterogeneous Catalysis FeZSM- 5: A Promising Catalyst”, Applied Catalysis B: Environmental, Vol. 10(4), pp: L229-L235.
  • 13. Phu, N.H., Hoa, T.T.K., Tan, N.V., Thang, H.V. and Ha, P.L., 2001, “Characterization And Activity Of Fe-ZSM-5 Catalysts For The Total Oxidation Of Phenol In Aqueous Solutions”, Appl. Catal. B: Environmental, Vol. 34(4), pp: 267-275.
  • 14. Guelou, E., Barrault, J., Fournier, J., Tatibouet, J-M., 2003, “Active Iron Species In Catalytic Wet Peroxide Oxidation Of Phenol Over Pillared Clays Containing Iron”, Appl. Catal. B: Environmental, Vol. 44(1), pp: 1-8
  • 15. Valkaj, K.M., Katovic, A. and Zrncevic, S., 2007, “Investigation of the Catalytic Wet Peroxide Oxidation Of Phenol Over Different Types Of Cu/ZSM-5 Catalyst”, Journal of Hazardous Materials, Vol. 144(3), pp: 663-667.
  • 16. Chaliha, S. and Bhattacharyya, K.G., 2008, “Wet Oxidative Method Of Removal Of 2,4,6-Trichlorophenol In Water Using Fe(III), Co (II), Ni (II) Supported MCM-41 Catalysts”, J. Hazardous Materials, Vol.150(3), pp: 728-736.
  • 17. Martinez, F., Calleja, G., Melera, J.A. and Molina, R., 2005, “Heterogeneous Photo-Fenton Degradation of Phenolic Aqueous Solutions Over Iron-Containing SBA-15 Catalyst”, Appl. Catal. B: Environmental, Vol. 60(3-4), pp: 181-190.
  • 18. Centi, G., Perathoner, S., Torre, T. and Verduna, M.G., 2000, “Catalytic Wet Oxidation with H2O2 of Carboxylic Acids On Homogeneous And Heterogeneous Fenton-Type Catalysts”, Catalysis Today, Vol. 55(1-2), pp: 61–69.
  • 19. Kuznetsova, E.V., Savinov, E.N., Vostrikova, L.A. and Parmon V.N., 2004, “Heterogeneous Catalysis in the Fenton-Type System FeZSM-5/H2O2”, Applied Catalysis B: Environmental, Vol. 51(3), pp: 165–170.
  • 20. Neamtu, M., Zaharia, C., Catrinescu, C., Yediler, A., Macoveanu, M. and Kettrup, A., 2004, “Fe-exchanged Y Zeolite As Catalyst For Wet Peroxide Oxidation Of Reactive Azo Dye Procion Marine H-EXL”, Appl. Catal. B: Environmental, Vol. 48(4), pp: 287-294.
  • 21. Ramirez, J.H., Costa, C.A., Madeira, L.M., Mata, G., Vicente, M.A., Rojas-Cervantes, M.L., Lopez-Peinado, A.J. and Martin-Aranda, R.M., 2007, “Fenton-like Oxidation Of Orange II Solutions Using Heterogeneous Catalysts Based On Saponite Clay”, Appl. Catal. B: Environmental, Vol. 71(1-2), pp: 44-56.
  • 22. Ince, H.N. and Tezcanlı, G., 2001, “Reactive Dyestuff Degradation by Combined Sonolysis and Ozonation”, Dyes and Pigments, Vol. 49(3), pp: 145-153.
  • 23. Wang, X.K., Chen, G.H. and Guo, W.L., 2003, “Sonochemical Degradation Kinetics of Methyl Violet in Aqueous Solutions”, Molecules, Vol. 8, pp: 40-44.
  • 24. Tezcanli-Guyer, G. and Ince, N.H., 2003, Degradation and Toxicity Reduction of Textile Dyestuff By Ultrasound, Ultrasonics Sonochemistry, Vol. 10(4-5), pp: 235-240.
  • 25. Gogate, P.R., Sivakumar, M. and Pandit, A.B., 2004, Destruction of Rhodamine B Using Novel Sonochemical Reactor with Capacity of 7.5 L, Separation and Purification Technology, Vol. 34(1-3), pp: 13-24.
  • 26. Tezcanli-Guyer, G. and Ince, N.H., 2004, “Individual And Combined Effects Of Ultrasound, Ozone And UV Irradiation: A Case Study With Textile Dyes”, Ultrasonics, Vol. 42(1-9), pp: 603-609.
  • 27. Ge, J. and Qu, J., 2004, “Ultrasonic Irradiation Enhanced Degradation Of Azo Dye On MnO2”, Applied Catalysis B: Environmental, Vol. 47(2), pp: 133-140.
  • 28. Rehopek, A., Tauber, M. and Gübitz, G., 2004, “Application of Power Ultrasound for Azo Dye Degradation”, Ultrasonics Sonochemistry, Vol. 11(3-4), pp: 177-182.
  • 29. Sun, J.-H., Sun, S.-P., Sun, J.-Y., Sun, R.-X., Qiao, L.-P., Guo, H.-Q. and Fan, M.-H., 2007, “Degradation Of Azo Dye Acid Black 1 Using Low Concentration Of Iron Of Fenton Process Facilitated By Ultrasonic Irradiation”, Ultrasonics Sonochemistry, Vol. 14(6), pp: 761-766.
  • 30. Larpparisudthi, O., Mason, T.J. and Paniwnyk, L., 2009, “Degradation of Chemical Water Pollutants Using Ultrasound”, GPE-EPIC, 2nd Int. Congress on Green Process Engineering-2nd European Process Intensification Conference, Venice/Italy, Proceedings pp: 1-6.
  • 31. Schwidder, M., Kumar, M.S., Klementiev, K., Pohl, M.M., Brückner, A. and Grünert, W., 2005, “Selective Reduction of NO with Fe-ZSM-5 Catalysts Of Low Fe Content I. Relations Between Active Site Structure And Catalytic Performance”, Journal of Catalysis, Vol. 231(2), pp: 314-330.
  • 32. Yaman Y.C., 2009, “Investigation of Degradatıon of a Textile Dye, Reactive Red 141 (RR141) Over FeZSM-5 Zeolites by Catalytic Wet Peroxide Oxidation and/or Sonication”, MSc Thesis, Ege University, Graduate School of Applied and Natural Sciences pp: 21.
  • 33. Szostak, R., Nair, V., Thomas, T.L., 1987, “Incorporation and Stability Of Iron In Molecular-Sieve Structures: Ferrisilicate Analogues Of Zeolite ZSM-5”, J. Chem. Soc., Faraday Trans. 1, Vol. 83, pp: 487-494.
  • 34. Heınrich, F., Schmidt, C., Löffler, E., Menzel, M. and Grünert, W., 2002, “Fe-ZSM-5 Catalysts for the Selective Reduction of NO By Isobutane-The Problem Of Active Sites”, Journal of Catalysis, Vol. 212(2), pp: 157-172.
  • 35. Mohamed, M.M., Ali, I.O. and Eissa, N.A., 2005, “Effect of Thermal Treatment On Surface And Bulk Properties Of Fe/ZSM-5 Zeolites Prepared By Different Methods”, Microporous and Mesoporous Materials, Vol. 87(2), pp: 93-102.
  • 36. Cheng, Y., Wang, L.-J., Li, J.-S., Yang, Y.-C. and Sun, X.-Y., 2005, “Preparation And Characterization Of Nanosized ZSM-5 Zeolites In The Absence Of Organic Template”, Materials Letters, Vol. 59(27), pp: 3427-3430.
  • 37. Nicolaides, C.P., 1999, “A Novel Family of Solid Acid Catalysts: Substantially Amorphous or Partially Crystalline Zeolitic Materials”, Appl. Catal. A: General, Vol. 185(2), pp: 211-217.
  • 38. Batista, M.S., Morales, M.A., Baggio-Saitovich, E. and Urquieta-Gonzalez, E.A., 2001, “Iron Species Present In Fe/ZSM-5 CatalystsInfluence of The Preparation Method”, Hyperfine Interactions, Vol. 134, pp: 161-166.
  • 39. Klier, K., Herman, R.G., Sojka, Z., Dicosimo, J.I. and Detavernier, S., 1992, “Methane Oxidation Over Dual Redox Catalysts”, Final Report, for U.S. Department of Energy under contract NO: DE-FG21-89MC26039 Lehigh University, Zettlemayer Center for Surface Studies, Pennyslvania, p. 51.
  • 40. Ali, I.O., 2007, “Preparation And Characterization of Copper Nanoparticles Encapsulated Inside ZSM-5 Zeolite And NO Adsorption”, Materials Science and Engineering: A, Vol. 459(1-2), pp: 294-302.
  • 41. Uygur, A., 1997, “An Overview of Oxidative and Photooxidative Decolorization Treatments of Textile Waste Waters”, JSDC, Vol. 113, pp: 211-217.
  • 42. Telke, A., Kalyani, D., Jadhav, J. And Govindwar, S., 2008,” Kinetics and Mechanism of Reactive Red 141 Degradation by a Bacterial Isolate Rhizobium Radiobacter MTCC 8161 “, Acta Chim. Slov., Vol.55, pp:320-329.
  • 43. Fındık, S. and Gündüz, G., 2007, “Sonolytic Degradation of Acetic Acid in Aqueous Solutions”, Ultrasonics Sonochemistry, Vol. 14(2), pp: 157-162.
  • 44. Fındık, S., Gündüz, G. and Gündüz, E., 2006, “Direct Sonication of Acetic Acid in Aqueous Solutions”, Ultrasonics Sonochemistry, Vol. 13(3), pp: 203-207.
Tekstil ve Konfeksiyon-Cover
  • ISSN: 1300-3356
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Ege Üniversitesi Tekstil ve Konfeksiyon Araştırma & Uygulama Merkezi