An Experimental Study on Selected Performance Properties of 100% Cotton Terry Fabrics

This paper presents an experimental study of the selected performance properties of 100% cotton terry fabrics. In this study, nine different constructions of terry fabrics are woven with Ne 12/1, Ne 16/1 and Ne 20/1 100% carded cotton ring spun weft yarns in three different weft densities. Fabric samples are subjected to 5 washing cycles before undergoing the tests; air permeability, resistance to pile loop extraction, bursting strength, tensile strength, tear strength, abrasion resistance, static water absorption and drying rate. Experimental results were analyzed using General Linear Model Analysis, Correlation Analysis and Paired-Samples T Test Analysis. According to results, weft yarn count is effective on air permeability, resistance to pile loop extraction, bursting strength, tensile strength, tear strength, mass loss ratio and static water absorption and weft density is effective on air permeability, resistance to pile loop extraction (15, 20 and 25 mm pulling distances), bursting strength, tensile strength, tear strength, mass loss ratio and remaining water ratio. The statistical evaluations demonstrate that repeated launderings also effect the performance properties of woven terry fabrics.

___

  • Germanova-Krasteva D.S., Kandzhikova G.D., Bochev A.G. 2013. Influence of terry fabrics structure on dynamic sorption. International Journal of Clothing Science and Technology 25(4), 243-256.
  • Zervent B., Çelik N., Koç E. 2003. Havlu Dokuma İşlemleri ve Üretim Hesapları. Tekstil Maraton 66, 54-60.
  • Singh J.P., Behera B.K. 2015. Performance of Terry Towel. Indian Journal of Fibre&Textile Research 40, 112-121.
  • Meeren, P.V., Cocquyt, J., Flores, S., Demeyere, H., Declercq, M. 2002. Quantifying Wetting and Wicking Phenomena in Cotton Terry as Affected by Fabric Conditioner Treatment. Textile Research Journal 72 (5), 423-428.
  • Zervent B., Koç E. 2006. An Experimental Approach on the Performance of Towels-Part II. Degree of Hydrophility and Dimensional Variation. Fibres & Textiles in Eastern Europe 14(2), 64-70.
  • Petrulyte S., Baltakyte R. 2008. Investigation into the wetting phenomenon of terry fabrics. Fibres & Textiles in Eastern Europe 16(4), 62-66.
  • Petrulyte S., Baltakyte R. 2009. Static water absorption in fabrics of different pile height. Fibres & Textiles in Eastern Europe 17(3), 60–65.
  • Petrulyte S., Nasleniene, J. 2010. Investigation of the liquid retention capacity of terry fabrics. Fibres & Textiles in Eastern Europe 18(5), 93-97.
  • Sekerden F. 2012. Investigation of Water Absorbency and Color Fastness of Modal Woven Towels. Scientific Research and Essays 7(2), 145- 148.
  • Zervent Ünal B., Özdemir H. 2013. Experimental and statistical comparison of selected water absorption test methods. Journal of the Textile Institute 104(11), 1178–1185.
  • Singh J. P., Behera B.K. 2014. Performance of terry towel-a critical review. Part I: Water absorbency. Journal of Textile and Apparel, Technology and Management 9(1), 1-14
  • Cruz J., Leitão A., Silveira D., Pichandi S., PintoM., Fangueiro R. 2017, June. Study of moisture absorption characteristics of cotton terry towel fabrics. 3rd International Conference on Natural Fibers: Advanced Materials for a Greener World, Braga, Portugal
  • Kakde M. V., More H., Magarwadia B., Kejkar V 2017. Effect of Pile Density on Physical Properties of Terry Towel Fabric. International Journal of Textile Engineering and Progress 3(1), 1-3.
  • Mojsov K. 2018. Enzymatic scouring and bleaching of cotton terry fabrics–opportunity of the improvement on some physicochemical and mechanical properties of the fabrics. Journal of Natural Fibers 15(5), 740-751.
  • Singh J. P., Behera B.K. 2018. Designing terry fabric for improved serviceability. Journal of Fibre&Textile Research 43, 415-420
  • Turhan Y., Soydaş Ş. 2018. The Effects of Ozone Bleaching and Ozone Desizing Method on Whiteness and Water Absorption of 100% Cotton Terry Fabrics. International Journal of Materials Science and Applications 7(3), 85-94.
  • Rathinamoorthy R. 2019. Influence of repeated household fabric softener treatment on the comfort characteristics of cotton and polyester fabrics. International Journal of Clothing Science and Technology 31(2), 207-219.
  • Yıldırım F.F., Gelgeç E., Deniz A.C., Çörekçioğlu M., Palamutçu S. 2018. The Comparison of Quick Drying Characteristics of Light-Weight Warp Knitted Towels. MCBÜ Soma Meslek Yüksekokulu Teknik Bilimler Dergisi 26(II), 45-54.
  • Kurtça, E. 2001. Atkı İpliği Özellikleri, Sıklık ve Örgü Tipinin Kumaş Mekanik Özellikleri Üzerine Etkisi. İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İstanbul, 64 s.
  • Omeroglu S., Ulku S. 2007. An Investigation about Tensile Strength, Pilling and Abrasion Properties of Woven Fabrics Made from Conventional and Compact Ring-Spun Yarns. Fibres & Textiles in Eastern Europe 15(1), 39- 42.
  • Zeydan M. 2008. Modelling the woven fabric strength using artificial neural network and Taguchi methodologies. International Journal of Clothing Science and Technology 20(2), 104-118.
  • Sarpkaya Ç., Özgür E., Sabır E. C. 2015. The Optimization Of Woven Fabric Tensile Strength With Taguchi Method Based On Grey Relational Analysis. Textile and Apparel 25(4), 293-299.
  • Vimal J.T., Prakash C., Rajwin A. J. 2018. Effect of Weave Parameters on the Tear Strength of Woven Fabrics. Journal of Natural Fibers DOI: 10.1080/15440478.2018.1558155.
  • Milašius R., Legaudienė B., Laureckienė G. 2018. Influence of Weave Parameters on Woven Fabric Tear Strength. Fibres & Textiles in Eastern Europe 26(4), 48-51.
  • Shanbeh M., Najafzadeh D., Ravandi S.A.H. 2012. Predicting pull-out force of loop pile of woven terry fabrics using artificial neural network algorithm. Industria Textila 63(1), 37-41.
  • Petrulyte S., Dapsauskaite D., Velickiene, A., Petrulis D. 2013. Investigation of the resistance to pile loop extraction of linen and ramie fabrics. Fibres & Textiles in Eastern Europe 21(5), 54-58.
  • Petrulyte S., Plascinskiene D., Petrulis D. 2017. Testing and predicting of yarn pull-out in aroma-textile. International Journal of Clothing Science and Technology 29(4), 566-577.
  • Petrulyte S. Baltakyte R. 2008. An investigation into air permeability of terry fabrics regarding the processes of finishing. Tekstil 57(1–2), 15–20.
  • Abo-Taleb H., El-Fowaty H., Sakr A. 2015. Theoretical prediction of overall porosity of terry woven fabrics. Journal of Textile Science & Engineering 5(6), 217.
  • Petrulyte S., Vankeviciute D., Petrulis D. 2016. Characterization of structure and air permeability of aromatherapic terry textile. International Journal of Clothing Science and Technology 28(1), 2-17.
  • Veličkienė A. 2016. Evaluation and Forecasting of Properties of Terry Fabrics Woven From Natural Fibres. Summary of Doctoral Dissertation, Kaunas University of Technology, Technological Sciences, Materials Engineering, Kaunas, Lithuania.
  • Zhu G., Fang Y., Zhao L., Wang J. Chen W. 2017. Prediction of structural parameters and air permeability of cotton woven fabric. Textile Research Journal 88(14), 1650-1659.
  • Ala D.M., İkiz Y. 2017. Subjective and Objective Evaluations of Terry Fabrics: Effects of Structural Parameters and Repeated Laundering. Textile and Apparel 27(4), 361-365.
  • Su C.I., Fang J.X. and Chen X.H. 2007. Moisture absorbtion and release of profilled polyester and cotton composite knitted fabrics. Textile Research Journal 77, 764-769.