TBDY 2018'e Göre Geoteknik Tasarım: Sıvılaşma ve Yapı-Kazık-Zemin Etkileşimi Analizleri

Bu çalışma Türkiye Bina Deprem Yönetmeliği (TBDY) 2018'e göre sıvılaşma potansiyeli olan zeminlerde derin temel tasarım adımlarını irdelemektedir. Bu amaçla, 1 Ocak 2019'dan itibaren yürürlükte olan yeni TBDY'e göre Mudanya'da inşa edilmesi planlanan bir apartman yapısının sıvılaşma ve zemin-kazık-yapı etkileşim analizleri de dahil olmak üzere geoteknik mühendislik tasarım aşamaları gerçekleştirilmiş ve sunulmuştur. Sıvılaşma analizlerindeki belirsizlikler, deprem kayıtlarının elde edilmesindeki ve ölçeklenmesindeki zorluklar, oturma sınır değerlerinin yönetmelikte belirtilmemesi ve Yöntem III'teki kinematik ve eylemsizlik etkileşimi analizi yaklaşımlarındaki farklı davranış kabullerine bu çalışmada dikkat çekilmiş ve tartışılmıştır.

Geotechnical Design with Respect to TBDY-2018: Liquefaction and Soil-Pile -Structure Interaction Analyses

This study explores the design steps of a building foundation in liquefiable soils according to TBDY 2018. For this purpose, geotechnical engineering design was performed in stages including the liquefaction and soil-pile-structure interaction analyses. The problematic issues such as the determination of Mw values that were used during liquefaction analyses, the search for time histories records to be scaled, the absence of recommended tolerable limits for the foundation soil settlements and different assumptions underlying the kinematic and inertial interaction approaches for Method III were addressed.

___

  • [1] TBDY, Türkiye Bina Deprem Yönetmeliği, AFAD, Türkiye, 2018.
  • [2] Hatanaka, M., & Uchida, A., Emprical Correlation between Penetration Resistance and Internal Friction Angle of Sandy Soils. Soils and Foundations, Vol. 36, No.4, pp. 1-10, 1996.
  • [3] Kulhawy, F.H., & Mayne, P.W., Manual on Estimating Soil Properties for Foundation Design. Electric Power Research Institute, Palo Alto, California, 1990.
  • [4] Wair, B.R., DeJong, J.T. & Shantz, T., Guidelines For Estimation Of Shear Wave Velocity Profiles. Pacific Earthquake Engineering Research (PEER) Center. PEER Report 2012/08, 2012.
  • [5] Youd, T. L., & Idriss, I. M., Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of geotechnical and geoenvironmental engineering, 127(4), 297-313, 2001.
  • [6] ASCE/SEI 7-10. Minimum design loads for buildings and other structures. 2010.
  • [7] NEHRP, Research Paper 12, Evaluation of geologic hazards and determination of seismic lateral earth pressures. Recommended Seismic Provisions, 2009.
  • [8] Akkar, S., Azak Eroğlu, T., Çan, T., Çeken, U., Demircioğlu M.B., Duman, T., Ergintav, S., Kadirioğlu, F.T., Kalafat, D., Kale, Ö., Kartal R.F., Kılıç, T., Özalp, S., Şeşetyan, K., Tekin, S., Yakıt, A., Yılmaz, M.T., Zülfikar, Ö., Türkiye Sismik Tehlike Haritasının Güncellenmesi. AFAD, Proje No: UDAP-Ç-13-06, 2014.
  • [9] Pacific Earthquake Engineering Research (PEER) Center, PEER Strong Motion Database, http://peer.berkeley.edu/smcat/, 2006.
  • [10] Ordonez, G.A., RSPMATCH. A computer program for GeoMotions. http://www.geomotions.com, 2005.
  • [11] Hashash, Y.M.A., Musgrove, M.I., Harmon, J.A., Ilhan, O., Groholski, D.R., Phillips, C.A., and Park, D., DEEPSOIL 7.0, User Manual. 2017.
  • [12] Kondner, R. L. and Zelasko, J. S., A hyperbolic stress-strain formulation of sands. Proceedings of the 2nd Pan American Conference on Soil Mechanics and Foundation Engineering, Sao Paulo, Brasil, 289-324, 1963.
  • [13] Matasovic, N, and Vucetic, M., Cyclic Characterization of Liquefiable Sands. ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 119, No. 11, pp 1805-1822, 1993.
  • [14] Darendeli, M.B., Development of a new family of normalized modulus reduction and material damping curves. Ph.D. Dissertation, The University of Texas at Austin, 2001.
  • [15] Chiaradonna, A., Bilotta, E., d’Onofrio, A., . Flora, A. & Silvestri, F., A Simplified Procedure for Evaluating Post-Seismic Settlements in Liquefiable Soils. Geotechnical Earthquake Engineering and Soil Dynamics V, Austin, Texas, 2018
  • [16] Tokimatsu, K., & Seed, H. B., Simplified procedures of the evaluation of settlements in clean sands. Rep. No. UCB/GT-84/16, University of California, USA, 1984.
  • [17] Ishihara, K., & Yoshimine, M., Evaluation of settlements in sand deposits following liquefaction during earthquakes. Soils and foundations, 32(1), 173-188, 1992.
  • [18] Shamoto, Y., Zhang, J. M., & Tokimatsu, K., New charts for predicting large residual post-liquefaction ground deformation. Soil dynamics and earthquake engineering, 17(7-8), 427-438, 1998.
  • [19] Wu, J., Seed, R. B., and Pestana, J. M., Liquefaction triggering and post liquefaction deformations of Monterey 0/30 sand under unidirectional cyclic simple shear loading. Geotechnical Engineering Research Rep. No. UCB/GE-2003/01, University of California, USA, 2003.
  • [20] Cetin, K. O., Bilge, H. T., Wu, J., Kammerer, A. M., & Seed, R. B., Probabilistic model for the assessment of cyclically induced reconsolidation (volumetric) settlements. Journal of Geotechnical and Geoenvironmental Engineering, 135(3), 387-398, 2009.
  • [21] Eurocode 7: Part 1, General Rules (together with United Kingdom National Application Document). London: British Standards Institution, 1995.
  • [22] CSI. SAP2000, V18.Integrated Software for Structural Analysis and Design. Berkeley, CA, USA: Computer andStructures Inc.(CSI), 2018.
  • [23] Reese, L. C., Cox, W. R., and Koop, F. D., Analysis of laterally loaded piles in sand. Proc. 6th Offshore Technology Conference, Paper 2080, Houston, Texas, pp. 473-483, 1974.
  • [24] American Petroleum Institute (API), Recommended practice for planning, designing and constructing fixed offshore platforms–working stress design. API Recommended Practice 2A(RP-2A WSD), 20th edn, 193 pp, 1993.
  • [25] Brandenberg, S.J., Boulanger, R.W., Kutter, B.L., Chang, D., Behavior of pile foundations in laterally spreading ground during centrifuge tests. J. Geotech. Geoenviron. Eng. 131(11):1378–1391, 2005.