Jeoid Değişimlerinin ICESat Altimetre Verisi ile Hesaplanan Su Seviyelerine Etkisi

Çalışmada, ICESat uydusundaki GLAS altimetre verileriyle hesaplanan su seviye yüksekliklerine jeoid yüksekliklerinin etkileri Burdur Gölü (BG) üzerinde incelenmiştir. Su yüzeylerinin günlük olarak tespit edilebilmesi için MODIS uydusuna ait karla kaplı alan haritaları kullanılmıştır. ICESat verilerindeki Global EGM2008 jeoid ile hesaplanan ve BG yer gözlem ölçülerinin su seviye farkları -0.96m ile -0.60m aralığında olup hataların ortalama karekökü 0.73m dir. Güncellenen jeoid ile hesaplanan su seviyelerinin hataları -0.20m ile 0.16m aralığında olup hataların ortalama karekökü 0.12m’ye inmiştir. DSİ yer gözlem verileri ile yapılan karşılaştırmada R2 0.98 olarak bulunmuştur. Birbirini takip eden kış ve yaz su seviye farkları 0.74m hesaplanıp maksimum 1.0m lik değişim içinde kalmıştır.

Effect of Geoid Variations on ICESat Altimeter Based Water Surface Elevations

This study investigates the effects of geoid variations on GLAS altimeter onboard ICESat satellite based water surface elevations (WSE) over Burdur Lake (BL). MODIS snow-covered area maps are used to detect water surfaces daily. The differences between ground observations of BL WSE and those calculated using ICESat Global EGM2008 geoid varied between -0.96m and -0.60m with a root mean square error of 0.73m. The errors of re-calculated water levels with the updated geoid heights varied from -0.20m to 0.16m and the root mean square error decreased to 0.12m. Comparison with DSİ ground observations yielded R2 as 0.98. Water level differences between the successive winter and summer is 0.74m and remained within the maximum change of 1.0m.

___

  • [1] The USGS Water Science School, https://water.usgs.gov/edu/gallery/watercyclekids/earth-water-distribution.html, 2020.
  • [2] Duan Z., Bastiaanssen W. G. M., Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sensing of Environment 134:403-416.DOI:10.1016/j.rse.2013.03.10, 2013
  • [3] Zhang, G., Xie H., Duan S., Tian, M., and Yi, D., Water level variation of Lake Qinghai from satellite and in situ measurements under climate change, J of Applied Remote Sensing, 2011
  • [4] Jiang L., Andersen O. B., Nielsen K., Zhang G., Bauer-Gottwein P., Influence of local geoid variation on water surface elevation estimates derived from multi-mission altimetry for Lake Namco, Remote Sensing of Environment, Volume 221, 2019, Pages 65-79 , https://doi.org/10.1016/j.rse.2018.11.004.
  • [5] ICESat. https://icesat.gsfc.nasa.gov/icesat/index.php (Son ulaşım 16 Eylül 2019)
  • [6] Rao, B . S., Kumar, G., A. N., Krishna P., V., S., S., N., Srinivasulu, P., Venkataraman V., R., Evaluation of EGM 2008 with EGM96 and its utilization in Topographical Mapping Projects., J. Indian Soc. Remote Sens., 40(2):335-340, doi:10.1007/s12524-011-0131-1, 2012
  • [7] Kılıçoğlu, A., Direnç, A., Simav, M., Lenk, O., Aktug, B., Yildiz, H. Evaluation of The Earth Gravitational Model 2008 in Turkey. 2019, https://www.harita.gov.tr/yuksismod/images/egitim/beb3eda36d64806.pdf
  • [8] Yilmaz., N. ve Karaali,. C., Comparison of global and local gravetric models in Turkey. Scientific and Research Essays., 5(14), 1829-1839, 2010
  • [9] Tekeli, A. E. Augmenting in situ lake level measurements with Earth observation satellites. Teknik Dergi, 29 (6), 0-0. DOI: 10.18400/tekderg.341316, 2018
  • [10] Ramsar Sites Information Service, Lake Burdur, https://rsis.ramsar.org/ris/658, 2019.
  • [11] Google Earth Pro V.7.3.2, 2019.
  • [12] Yiğitbaşıoğlu, H., Uğur, A., Burdur Gölü Havzasında Arazi Kullanım Özelliklerinden Kaynaklanan Çevre Sorunları, Ankara Üniversitesi Çevrebilimleri Dergisi, Cilt 2, Sayı 2, 129-143, 2010.
  • [13] DMİ 2019 , https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=BURDUR
  • [14] Kaya, L., G., Yücedağ, C., Duruşkan, Ö., Burdur Gölü Havzasının Çevresel Açıdan İrdelenmesi, Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6(1): 6-10 (2015).
  • [15] Keskin, M., E., Taylan, E., D., Eğirdir ve Burdur Gölleri Su Seviyelerinde Olasi Azalma Eğilimleri, 4. Su Yapıları Sempozyumu, sayfalar: 489-499, 2015.
  • [16] Ataol, M. Burdur Gölü’nde Seviye Değişimleri, Coğrafi Bilimler Dergisi, 8 (1), 77-92, 2010.
  • [17] Yiğitbaşoğlu, H., Uğur, A., Burdur Gölü’nün Jeoekolojik Özellikleri ve Sorunları, TURQUA Türkiye Kuvaterner Sempozyumu V, sayfalar: 100-103, 2005.
  • [18] Yıldırım, Ü., Uysal, M. (2011). Changes in the Coastline of the Burdur Lake Between 1975 and 2010. International Symposium on Environmental Protection and Planning: Geographic Information Systems (GIS) and Remote Sen-sing (RS) Applications (ISEPP) 28-29 June 2011, Izmir-Turkey.
  • [19] Şener, E., Morova, N., Bulanık Mantık ve Doğrusal Regresyon Analizleri ile Burdur Gölü Su Seviyesi Değişimlerinin Modellenmesi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 15-1( 2011),60-66
  • [20] Zwally, H. J., Schutz, B., Abdalati, W., Abshire, J., Bentley, C., Brenner, A., et al., ICESat's laser measurements of polar ice, atmosphere, ocean, and land, Journal of Geodynamics, 34(3–4), 405−445, 2002.
  • [21] Spinhirne, J. D., S. P. Palm, W. D. Hart, D. L. Hlavka, and E. J. Welton, Cloud and aerosol measurements from GLAS: Overview and initial results, Geophys. Res. Lett., 32, L22S03, 2005, doi:10.1029/2005GL023507.
  • [22] NSIDC, https://nsidc.org/sites/nsidc.org/files/technical-references/GLAS_ATBD_Range_and_Range_Distribution_v7_08_2012.pdf, (Son ulaşım 16 Eylül 2019)
  • [23] Kwok, R., Zwally, H. J., Yi, D., ICESat observations of Arctic sea ice: a first look. Geophysical Research Letters, 31, L16401, 2004
  • [24] Srivastava, P., Bhambri, R., Kawishwar, P., Dobhal, D. P., Water level changes of high altitude lakes in Himalaya–Karakoram from ICESat altimetry, J. Earth Syst. Sci.122, 1533–1543, 2013.
  • [25] Khvorostovsky, K., Rampal, P., On retrieving sea ice freeboard from ICESat laser altimeter, The Cryosphere, 10, 2329–2346, 2016.
  • [26] Song, C., Huang, B., Ke, L., Heterogeneous change patterns of water level for inland lakes in High Mountain Asia derived from multi-mission satellite altimetry, Hydrological Processes, 29, 2769-2781, 2015, doi:10.1002/hyp.10399
  • [27] Zhang, G. ,Xie, H., Kang, S. ,Yi, D. and Ackley, S. F., Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009), Remote Sens. Environ, 115(7), 1733–1742, 2011.
  • [28] Song C, Huang B, Ke L. 2013. Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sensing of Environment 135: 25–35. DOI: 10.1016/j. rse.2013.03.013.
  • [29] MODIS. http://modis.gsfc.nasa.gov/data/dataprod/mod10.php (Son ulaşım 16 Eylül 2019)
  • [30] Hall, D. K., Riggs, G. A., Salomonson, V. V., Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data, Remote Sens Environ, 54:127–14, 1995.
  • [31] Pu, Z., Xu, L., Salomonson, V. V., MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau, Geopyhs Res Lett, 34:L06706., 2007 doi:10,1029/2007GL029262
  • [32] Gafuorov A., Vorogushyn S., Farinotti D., Duethmann D., Merkushkin A., Merz B., Snow-cover reconstruction methodology for mountainous regions based on historic in situ observations and recent remote sensing data, The Cryosphere, 9, 451-463, 2015.
  • [33] Xu W., Ma H., Wu D., Yuan W., Assessment of the Daily Cloud-Free MODIS Snow-Cover Product for Monitoring the Snow-Cover Phenology over the Qinghai-Tibetan Plateau, Remote Sens, 9(6),585, 2017
  • [34] Tekeli, A. E., Akyürek, Z, Şorman, A. A., Şensoy, A., Şorman, A. U., Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey, Remote Sens Environ, 97, 216–230, 2005.
  • [35] Tekeli, A. E., Sensoy, A., Sorman, A. A., Akyurek, Z., Sorman, A. U., Accuracy assessment of MODIS daily snow albedo retrievals with in situ measurements in Karasu Basin, Turkiye, Hydrological Processes, 20, 705-721, 2006.
  • [36] Uysal G., Şorman A. A., Şensoy A., 2016. Streamflow Forecasting Using Different Neural Network Models with Satellite Data for a Snow Dominated Region in Turkey, Procedial Engineering 154, 1185-1192, 12th International Conference on Hydroinformatics, HIC 2016, 21-26 August 2016
  • [37] Uysal G., Şensoy A., Şorman A. A., 2016. Improving daily streamflow forecasts in mountainous Upper Euphrates basin by multi-layer percoptron model with satellite snow products . J. Hydrol.534,630-650, http://dx.doi.org/10.1016/j.jhydrol.2016.10.037
  • [38] Sorman A. A., Uysal G., Sensoy A., Probabilistic Snow Cover and Ensemble Streamflow Estimations in the Upper Euphrates Basin, Journal of Hydrology and Hydromechanics, 67,1,82-92, https://doi.org/10.2478/johh-2018-0025
  • [39] Hall, D. K., V. V. Salomonson, and G. A. Riggs. 2006. MODIS/Terra Snow Cover Daily L3 Global 500m Grid, Version 5. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/63NQASRDPDB0.
  • [40] Koçıbay O. Burdur tarihi, https://www.academia.edu/32247710/Burdur_Gölü (Last accessed 06 Eylul 2019).
  • [41] ICESat2. http://icesat.gsfc.nasa.gov/icesat2/science_objs.php (Last accessed 20 February 2017).