The Effect of Nitrogen Deficiency on the Growth and Lipid Content of Isochrysis affinis galbana in Two Photobioreactor Systems (PBR): Tubular and Flat Panel

Energy is becoming one of the most expensive production inputs nowadays. Energy reserves are starting to run out and their polluting nature has become undeniable. Therefore, there is an urgent necessity for renewable energies. One of these energy sources is algae, which are seen as promising for biofuel production. Algae can be cultured in non-agricultural land, high photosynthetic activity, harvested throughout the year high biomass production. High lipid from algae is possible by reducing some elements of growth conditions from the nutrient medium. In this study, Isochrysis affinis galbana species were cultured in two reactors; flat panel photobioreactors with different light paths (1, 3, 5, 7 and 10 cm) and tubular photobioreactors, with 50% nitrogen reduction and 20% inoculation densities. Biomass, lipid and protein ratios were determined. The highest lipid content of 33.13% was obtained from I. aff. galbana with 12.11% protein in flat panel photobioreactors with 50% nitrogen reduction and 10 cm light path, and a 0.991 g L-1 biomass rate was obtained. The highest optical density was found in the 10 cm light path flat panel photobioreactor with a 50% nitrogen reduction.

___

  • Adenan NS, Yusoff FM, Medipally SR & Shariff M (2016). Enhancement of lipid production in two marine microalgae under different levels of nitrogen and phosphorus deficiency. Journal of Environmental Biology 37(4): 669-676
  • Ak B, Işık O, Uslu L & Azgın C (2015). The effect of stress due to nitrogen limitation on lipid content of Phaeodactylum tricornutum (Bohlin) cultured outdoor in photobioreactor. Turkish Journal of Fisheries and Aquatic Sciences 15(3): 647-652
  • AOAC (1995). Official Methods of Analysis, 16. ed. In: Cuniff P (Ed). AOAC International, Washington
  • Becker EW (1994). Microalgae: biotechnology and microbiology. Cambridge University Press, Cambridge, 291p
  • Ben-Amotz A, Tornabene TG & Thomas WH (1984) Chemical profile of selected species of microalgae, with emphasis on lipids. Journal of Phycology 21(1): 72-81
  • Bligh EG & Dyer WJ. A rapid method for total lipid extraction and purification. Canadian Journal of Biochemistry and Ahysiology 37(8):911-917
  • Brown MR, Jeffry SW & Garland CD (1989). Nutritional aspects of microalgae used in mariculture: a literature review. CSIRO Marine Laboratory Report, pp. 205-244
  • Bulut Mutlu Y, Işık O, Uslu L, Koç K & Durmaz Y (2011). The effects of nitrogen and phosphorus deficiencies and nitrite addition on the lipid content of Chlorella vulgaris (Chlorophyceae). African Journal of Biotechnology 10(3): 453-456
  • Chisti Y (2007). Biodiesel from microalgae. Biotechnology Advances 25(3): 294-306
  • Cohen Z, Vonshak A & Richmond A (1988). Effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum: correlation to growth rate. Journal of Phycology 24(3): 328-332
  • Converti A, Casazza AA, Ortiz EY, Perego P & Del Borghi M (2009). effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification 48(6): 1146-1151
  • Damiani Cecilia M, Popovich CA, Constenla D & Leonardi PI (2010). Lipid analysis in Haematococcus pluvialis to assess its potential use a biodiesel feedstock. Bioresource technology 101(11): 3801-3807
  • Durmaz Y (2000). Chlorella sp’ nin ince cam panel biyoreaktörlerde üretiminde ışığın etkisi üzerine bir araştırma. Yüksek Lisans Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, Bornova İzmir
  • Durmaz Y & Erbil GÇ (2017). Performance of industrial-scale tubular photobioreactor in marine hatchery. Journal of Applied Phycolgy 29(6): 2755-2760
  • Fábregas J, Abalde J & Herrero C (1989). Biochemical composition and growth of the marine microalga Dunaliella tertiolecta (butcher) with different ammonium nitrogen concentrations as chloride, sulphate, nitrate and carbonate. Aquaculture 83(3-4):289-304
  • Fidalgo JP, Cid A, Abalde J &Herrero C (1995). Culture of the marine diatom Phaeodactylum tricornutum with different nitrogen sources: Growth, nutrient conversion and biochemical composition. Cahiers de Biologie Marine 36: 165-73
  • Gouveia L, Marques Ae, Lopes Da Silva T & Reis A (2009). Neochloris oleabundans UTEX#1185: A suitable renewable lipid source for biofuel production. Journal of Industrial Microbiology & Biotechnology 36(6): 821-826
  • Guillard RR (1973). Division Rates. In: Stein RJ (Ed), Handbook of Hycological Methods, Culture Methods and Growth Measurement, Cambridge University Press, pp. 283-311
  • Hoff FH & Snell TW (1987). Plankton Culture Manual. Florida Aqua Farms, Dade City, 155p
  • Hu Q & Richmond A (1994). Optimizing the population density in Isochrysis galbana grown outdoors in a glass column photobioreactor. Journal of Applied Phycology 6(4):391-396
  • Hu Q, Guterman H & Richmond A (1996a). A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnology and Bioengineering 51(1): 51-60
  • Hu Q, Guterman H & Richmond A (1996b). Physiological characteristics of Spirulina platensis (cyanobacteria) cultured at ultrahigh cell densities. Journal of Phycology 32(6):1066-1073
  • Illman AM, Scragg AH & Shales SW (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology 27(8):631-635
  • Kamalanathan M, Pierangelini, M, Shearman LA, Gleadow R & Beardall J (2016). Impacts of nitrogen and phosphorus starvation on the physiology of Chlamydomonas reinhardtii. Journal of Applied Phycology 28(3): 1509-1520
  • Kilham SS, Kreeger DA, Goulden CA & Lynn SG (1997). Effects of nutrient limitation on biochemical constituents of Ankistrodesmus falcatus. Freshwater Biology 38(3): 591-596
  • Lin YH, Chang FL, Tsao CY & Leu JY (2007). Influence of growth phase and nutrient source on fatty acid composition of Isochrysis galbana CMP1324 in a batch photoreactor. Biochemical Engineering Journal 37(2):166-176
  • Lourenço SO, Barbarino E, De-Paula JC, Pereira LOS & Marquez UML (2002) Amino acid composition, protein content and calculation of nitrogen to protein conversion factors for 19 tropical seaweeds. Phycological Research 50(3): 233-241
  • Lynn SG, Kilham SS, Kreeger DA & Interlandi SJ (2000). Effect of nutrient availability on the biochemical and elemental stoichiometry in the freshwater diatom Stephanodiscus minutulus (Bacillariophyceae). Journal of Phycology 36(3): 510-522
  • Mandal S & Mallick N (2009). Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology 84(2):281-291
  • Marín N, Morales F, Lodeiros C & Tamigneaux E (1998). Effect of nitrate concentration on growth and pigment synthesis of Dunaliella salina cultivated under low illumination and preadapted to different salinities. Journal of Phycology 10: 405-411
  • Neenan B, Feinberg D, Hill A, Mcintosh R & Terry K (1986). Fuels from microalgae: Technology status, potential, and research requirements. Publ. No. SERi/SP-231- 2550, Solar Energy Research Institute, Golden CO
  • Parsons TR & Strickland JDH (1963). Discussion of spectrophotometric determination of marine plant pigments, with revised equations for ascertaining chlorophylls and carotenoids. Journal of Marine Research 21:115-163
  • Pruvost J, Van Vooren, G Cogne & Legrand J (2009). Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresource Technology 100(23): 5988-5995
  • Richmond A. (1986). Handbook of Microalgal Mass Culture, FL: CRC Press, Boca Raton.
  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G & Tredici MR (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering 102(1): 100-112
  • Roessler PG (1990). Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. Journal of Phycology 26: 393-399
  • Shifrin NS & Chisholm SW (1981). Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light-dark cycles. Journal of Phycology 17(4): 374-384
  • Sukenik A (1991). Ecophysiological considerations in the optimization of eicosapentaenoic acid production by Nannochloropsis sp. (Eustigmatophyceae). Bioresource Technology 35(3): 263-269
  • Sukenik A, Carmeli Y & Berner T (1989). Regulation of fatty acid composition by irradiance level in the Eustigmatophyte Nannochloropsis sp. J Journal of Phycology 25: 686-692
  • Sukenik A & Wahnon R (1991). Biochemical quality of marine unicellular algae with special emphasis on lipid composition, I. Isochrysis galbana. Aquaculture 97(1): 61-72
  • Thomas WH, Seibert DLR, Alden M, Neori A & Eldridge P (1984). yields, photosynthetic efficiencies and proximate composition of dense marine microalgal cultures. I. Introduction and Phaeodactylum tricornutum experiments. Biomass 5(3): 181-209
  • Tornabene TG, Holzer G, Lien S & Burris N (1983). Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme and Microbial Technology 5(6): 435-440
  • Uslu L, Işık O, Koç K & Göksan T (2011). The effects of nitrogen deficiencies on the lipid contents of Spirulina platensis. African Journal of Biotechnology 10(3): 386-389
  • Uslu L, Durmaz Y, Isik O, Mutlu Y, Koc K & Ak B (2013). Nitrogen limitation increases lipid content of Chlorella vulgaris at photobioreactor system. Journal of Animal and Veterinary Advances 12(1): 52-57
  • Uslu L, Ak B, Işik O & Durmaz Y (2014). Effect of light path length and nitrogen deficiency on the biochemical composition of Phaeodactylum tricornutum. Fresenius Environmental Bulletin 23(6): 1309-1313
  • Utting SD (1985). Influence of nitrogen availability on the biochemical composition of three unicellular marine algae of commercial importance. Aquacultural Engineering 4(3):175-190
  • Weldy CS & Huesemann M (2007). Lipid production by Dunaliella salina in batch culture: Effects of nitrogen limitation and light intensity. Journal of Undergraduate Research 7(1): 115-122
  • Xu N, Zhang X, Fan X, Han L & Zeng, C (2001). Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp. (Eustigmatophyta). Journal of Applied Phycology, 13(6): 463-469
  • Zar JH (1999). Biostatistical Analysis. Upper Saddle River. 4th edn. Prentice Hall, New Jersey, Cap. 12, p. 231-272
  • Zhila NO, Kalacheva GS & Volova TG (2005). Effect of nitrogen limitation on the growth and lipid composition of the green alga Botryococcus braunii Kutz IPPAS H-252. Russian Journal of Plant Physiology 52(3): 311-319
  • Zhila NO, Kalacheva GS & Volova TG (2011). Effect of salinity on the biochemical composition of the alga Botryococcus braunii Kütz IPPAS H-252. Journal of Applied Phycology 23(1): 47-52
  • Zijffers JWF, Janssen M, Tramper J. & Wijffels RH. (2008). Design process of an area-efficient photobioreactor. Marine Biotechnology 10: 404–415
  • Zou N. & Richmond A. (1999). Effect of light- path length in outdoor flate plate reactors on output rate of cell mass and of EPA in Nannochloropsis sp. Journal of Biotechnology 70: 351-356