Sıçrama Erozyonunun Farklı Kinetik Enerji Akısı ve Farklı Toprak Bünyesi Etkilesimleriyle Arastırılması

Yağışın etkisiyle toprak parçalanması, toprak kaybına neden olan süreçte önemli aşamalardan birisidir. Bu şekilde toprağın parçalanması, yağış ile toprak özelliklerine bağlıdır. Bu araştırmanın amacı farklı kinetik enerji akışı ve farklı toprak bünyelerinin sıçrama erozyonuna etkisini belirlemektir. Laboratuar koşullarında, beş farklı toprak bünyesinde kil, siltli kil, killi tın, tın ve kumlu killi tın , iki farklı kinetik enerjili yağışta [547.66 J m-2 h-1 ve 2223.52 J m-2 h-1] ve üç tekerrürlü olarak toplam otuz adet yapay yağmurlama gerçekleştirilmiştir. Yapay yağmurlama aletinin su yükü ve damla oluşturucu etkinliği artırılarak iki farklı kinetik enerjili yağış oluşturulmuştur. İstatiksel analizler kinetik enerji, bünye ve iki faktör arasındaki etkileşimin sıçrama ile toprak parçalanmalarını önemli ölçüde etkilediğini göstermiştir. Sıçrama erozyonu, kinetik enerjinin artmasıyla artmıştır. Düşük kinetik enerjili yağışta sıçrama parçalanmasının farklı bünyeli topraklara etkisi aynı olmuştur. Yüksek kinetik enerjili yağışta toprak bünyesine bağlı olarak sıçrama parçalanma miktarları ise farklılık göstermiştir. Yüksek kinetik enerjili yağışta sıçrama parçalanması en fazla kumlu killi tında olurken bunları killi tın, tın, siltli kil ve kil takip etmiştir

Study on Splash Erosion with Interaction of Different Kinetic Energy Flux and Soil Texture

Soil detachment due to rainfall is one of the most important phases that cause soil loss, which depends on rainfall and soil characteristics. The aim of this research was to determine the effects of different kinetic energy flux and different soil textures on splash erosion. Five different soil textures clay, silt loam, clay loam, loam and sandy clay loam , and two kinetic energy flux 547.66 J m-2 h-1 and 2223.52 J m-2 h-1 were used to form 30 rainfall simulations with three replications under laboratory conditions. Kinetic energy fluxes were arranged by increasing the water head and drop former efficiency of rainfall simulator. Statistical analyses showed that kinetic energy, texture and their interactions significantly affected the splash detachment. Splash erosion increased with increasing kinetic energy. Effect of low kinetic energy on splash detachment was the same on different textured soils. However, the amount of splash detachment varied depending on the texture under high kinetic energy rainfall. The highest splash detachment under high kinetic energy rainfall was obtained in sandy clay loam soils followed by clay loam, loam, silty clay and clay

___

  • Al- Durrah M. M. and J.M. Bradford. 1982. Parameters for describing detachment due to waterdrop impact. Soil Science Society of America Journal 46: 836-840.
  • Amorim, R.S.S., D.D. Silva, F.F. Pruski and A.T. Matos. 2001. Influence of the soil slope and kinetic energy of simulated precipitation in the interrill erosion process. Soil Erosion Research for the 21 st Century. Proceedings of the International Symposium. January 3-5, 2001. Honolulu-Hawaii. Ed. James C. Ascough, Dennis C. Flanagan.
  • Dengiz, O. ve İ. Bayramin. 2003. Ankara Gölbaşı yöresi topraklarının farklı toprak sınıflandırma sistemlerine göre sınıflandırılması. Harran Üniversitesi Ziraat Fakültesi Dergisi 7 (3-4): 61-68.
  • Erpul, G. ve M. Çanga. 2001. Toprak erozyon çalışmaları için bir yapay yağmurlama aletinin tasarım prensipleri ve yapay yağış karakteristikleri. Ankara Üniversitesi Ziraat Fakültesi Tarım Bilimleri Dergisi 7(1): 75-83.
  • Gee, G. W. and J. W. Bauder. 1986. Particle size analysis. In: Klute, A. (Ed), Methods of Soil Analysis. Part 2, Second Ed., ASA Monograph No 9. Madison, WI. pp. 337-382.
  • Ghadiri, H. 2004. Creater formation in soils by raindrop impact. Earth Surface Processes and Landforms 29: 77-89.
  • Gumiere, S. J., Y. Le Bissonnais and D. Raclot. 2009. Soil resistance to interill erosion: Model parameterization and sensitivity. Catena 77: 274-284.
  • Kemper, W.D. and R.C. Rosenau. 1986. Aggregate stability and size distribution. In: Klute, A. (Ed), Methods of Soil Analysis. Part 2, Second Ed., ASA Monograph No 9. Madison, WI. pp. 425-442.
  • Laws, J.O. 1941. Measurements of the fall velocity of waterdrops and raindrops. Transactions American Geophysical Union 22:709-721.
  • Leguedois, S. and Y. Le Bissonnais. 2004. Size fractions resulting from an aggregate stability test, interrill detachment and transport. Earth Surface Processes and Landforms 29: 1117-1129.
  • Mc Lean, E. O. 1982. Soil pH and lime requirement. In: Page, A. L., R. H. Miller and Keeney, D. R. (Ed.), Methods of Soil Analysis. Part 2, Second Ed., ASA Monograph No 9. Madison, WI. pp. 199-223.
  • Moldenhauer, W.C. and D.C. Long. 1964. Influence of rainfall energy on soil loss and infiltration rates: I. Effect over a range of texture. Soil Science Society of America Journal 28: 813-817.
  • Morgan, R. P.C. 1995. Soil Erosion and Conservation. Longman, Essex, England.
  • Nelson, R. E. 1982. Carbonate and gypsum. In: Page, A. L., R. H. Miller and Keeney, D. R. (Ed.), Methods of Soil Analysis. Part 2, Second Ed., ASA Monograph No 9. Madison, WI. pp. 181-198.
  • Nelson, R. E. and L.E. Sommers. 1982. Total carbon, organic carbon and organic matter. In: Page, A. L., R. H. Miller and Keeney, D. R. (Ed.), Methods of Soil Analysis. Part 2, Second Ed., ASA Monograph No 9. Madison, WI. pp. 539-579.
  • Olsen, S. R. and L. E. Sommers. 1982. Phosphorus. In: Page, A. L., R. H. Miller and Keeney, D. R. (Ed.), Methods of Soil Analysis. Part 2, Second Ed., ASA Monograph No 9. Madison, WI. pp. 403-430.
  • Park S.W, J. K. Mitchell and G. D. Bubenzer. 1983. Rainfall characteristics and their relation to splash erosion. Transactions of the American Society of Agricultural Engineering 26: 795–804.
  • Parsons, A. J. and A. M. Gadian. 2000. Uncertainty in modelling the detachment of soil by rainfall. Earth Surface Processes and Landforms 25: 723-728.
  • Renard, K. G., G. R. Foster, G. A. Weesies and D.C. Yoder. 1997. Predicting Soil Erosion by Water : Revised Universal Soil Loss Equation (RUSLE). Agricultural Handbook No: 703. United States Department of Agriculture, Washington, DC. 384 pp.
  • Rhoades, J. D. 1982. Soluble salts. In: Page, A. L., R. H. Miller and Keeney, D. R. (Ed.), Methods of Soil Analysis. Part 2, Second Ed., ASA Monograph No 9. Madison,WI. pp. 167-179.
  • Salles, C., J. Poesen and G. Govers. 2000. Statistical and physical analysis of soil detachment by raindrop impact: rain erosivity indices and threshold energy. Water Resources Research 36: 2721-2729.
  • Soil Survey Staff. 1999. Soil Taxonomy. A Basic of Soil Classification for Making and Interpreting Soil Survey. USDA Handbook No: 436, Washington D.C.
  • Thomas, G. W. 1982. Exchangeable cations. In: Page, A. L., R. H. Miller and Keeney, D. R. (Ed.), Methods of Soil Analysis. Part 2, Second Ed., ASA Monograph No 9. Madison, WI. pp. 159-166.
  • Ting, M., C., Zhou, T. Zhu and Q. Cai. 2008. Modelling raindrop impact and splash erosion processes within a spatial cell: a stochastic approach. Earth Surface Processes and Landforms 33: 712-723.
  • Van Dijk, A.I.J.M., A.G.C.A. Meesters and L.A. Bruijnzeel. 2002. Exponential distribution theory and the interpretation of splash detachment and transport experiments. Soil Science Society of America Journal 66: 1466-1474.
  • Wischmeier, W. H. and D. D. Smith. 1978. Predicting rainfall erosion losses: a guide to conservation planning. Agricultural Handbook No: 537. United States Department of Agricultural Science and Education Administration, Agricultural Research, Washington, DC. 58 pp.
  • Young, R. A. and J.L. Wiersma. 1973. The role of impact in soil detachment and transport. Water Resourch Research 9: 1629-1636.