Mekanik Hasarsız Çarpma Tekniğiyle Domatesin Sertliğine Göre Sınıflandırılması

Bu çalışmada, mekanik hasarsız çarpma tekniği kullanılarak domatesin sertliklerine göre sınıflandırılması incelenmiştir. Denemelerde Bandita F1 domates çeşidi kullanılmıştır. Düşük çarpma enerjili yanal çarpma aygıtı kullanılarak yapılan hasarsız çarpma ölçümlerinde, çarpma ivmesi ve temas zamanı, çarpma başlığı üzerine yerleştirilmiş ivme algılayıcıile algılanmış ve ana çarpma parametreleri (maksimum çarpma ivmesi, maksimum çarpma ivmesinde ölçülen zaman ve temas zamanı) elde edilen eğrilerden bulunmuştur. Diğer çarpma parametreleri ana parametrelerden ve elastisite teorisinden türetilmiştir. Bu hasarsız çarpma parametreleri, hasarlı referans parametresi ile karşılaştırılmıştır. Hasarlıreferans parametresi ölçümlerinde, kabuk yırtılma noktasındaki kuvvet-deformasyon oranı kullanılmış ve bu değer domates sertliği olarak ifade edilmiştir. Domateslerin sertlik gruplandırmalarında kümeleme analizi kullanılmıştır. Ayrıca, domateslerin sınıflandırma işlemlerinde, sahip oldukları sertlik gruplarındaki hatalı sınıflandırma olasılığınıminimize edecek hasarsız çarpma parametrelerinin optimum doğrusal kombinasyonlarını bulmak için, doğrusal ayırma analizi kullanılmıştır. Sınıflandırma hassasiyeti doğrusal ayırma analizi ile iyileştirilmiş ve işlenen parametre sayısı stepwise regresyon analizi ile azaltılmıştır. İstatistiksel analiz sonuçları, hasarlı referans ve hasarsız çarpma parametreleriarasındaki korelasyonun önemli olduğunu göstermiştir. Doğrusal ayırma analizi sonuçlarına göre, doğrusal sınıflandırma hassasiyeti ana çarpma parametreleri yaklaşımı için % 77.27 ve on çarpma parametre yaklaşımı için de % 81.82 olarak bulunmuştur. Ayrıca, stepwise regresyon analizi ile belirlenmiş olan en önemli üç çarpma parametresi kullanılarakyapılan doğrusal ayırma analizi sonuçları, domateslerin doğru sınıflandırma hassasiyetinin % 82.96’ya yükseltildiğini göstermiştir. Sonuç olarak, statik koşullarda test edilmiş olan mekanik hasarsız çarpma test cihazı domates için yüksek sınıflandırma hassasiyeti sonuçları vermiştir. Bu performans, mekanik hasarsız çarpma tekniğinin, domateslerin elektronik sınıflandırma hattında gerçek zamanlı sertlik sınıflandırma amaçlı kullanılabileceğini göstermektedir.

-

In this study, firmness classification of tomato was aimed by using mechanical nondestructive impact technique. Bandita F1 tomato variety was used during the tests. In the nondestructive impact measurements done by lateral impactor with low impact energy, impact acceleration and contact time were sensed by an accelerometer attached on impact head, and main impact parameters (maximum impact acceleration, time required to reach maximum acceleration and contact time) were extracted from the curve. Other impact parameters were derived from the main impact parameters and theory of elasticity. These nondestructive impact parameters were compared with destructive reference parameters. Forcedeformation ratio at rupture point was used in the measurements of destructive reference parameter and this was expressed to be tomato firmness. Cluster analysis was used for firmness groups of tomatoes. Furthermore, linear discriminating analysis was used to find an optimum linear combination of the impact parameters that minimizes the probability of misclassifying tomatoes into their respective groups for firmness classification procedure of tomatoes. The accuracy of classification was improved with linear discriminating analysis, and the number of parameters being processed was reduced with stepwise regression analysis. Statistical analysis showed that the correlations between destructive reference and nondestructive impact parameters were significant. According to the results of linear discriminating analysis, accuracy of the best classification for main impact parameter approach and all ten impact parameters approach was found to be 77.27% and 81.82%, respectively. Furthermore, linear discriminating analysis results for three most important impact parameters obtained with stepwise regression analysis showed that accuracy of the best classification of tomatoes was improved to 82.96%. As a result, mechanical nondestructive test device tested in static conditions gave high accuracy of classification for tomato. This performance shows that mechanical nondestructive impact technique could be used for real-time firmness classification of tomatoes in the electronic sorting line

___

  • ASAE Standards (2009). Compression test of food materials of convex shape. ASAE S368.4 DEC 2000 (R2008). American Society of Agricultural and Biological Engineers, St. Joseph, Michigan, USA, pp. 678-686
  • Batu A (2004). Determination of acceptable firmness and colour values of tomatoes. Journal of Food Engineering 61(3): 471-475
  • Bui H T, Makhlouf J & Ratti C (2010). Postharvest ripening characterization of greenhouse tomatoes. International Journal of Food Properties 13(4): 830-846
  • Chen P & Ruiz-Altisent M (1996). A low-mass impact sensor for high speed firmness sensing of fruits. In: Proceedings of International Conference on Agricultural Engineering, 23-26 September, Madrid, Spain, pp. 1-8
  • Chen P (2001). Application of elastic theory to high speed impact sensing of fruit. In: Workshop on Control Applications in Post-Harvest and Processing Technology, 3-5 October, Tokyo, Japan, pp. 1-6
  • Chen P & Tjan Y (1998). A real-time impact sensing system for on-line firmness sensing of fruits. In: Conference on Agricultural Engineering, 24-27 August, Oslo, Norway, pp. 314-315
  • Garcia-Ramos F J (2001). Desarrollo de dispositivos mechanicos para reducer danos y medir la firmeza en lineas de manipulacion de frutas. Ph.D. Thesis (Unpublished). Universidad Politecnica de Madrid, Espana
  • Gutierrez A, Burgos J A & Molto E (2007). Pre-commercial sorting line for peaches firmness assessment. Journal of Food Engineering 81(4): 721-727
  • Homer I, Garcia-Ramos F J, Ortiz-Canavate J & Ruiz- Altisent M (2010). Evaluation of non-destructive impact sensor to determine on-line fruit firmness. Chilean Journal of Agricultural Research 70(1): 67-74
  • Kader A A, Morris L L & Chen P (1978). Evaluation of two objective methods and a subjective rating scale for measuring tomato fruit firmness. Journal of the American Society for Horticultural Science 103(1): 70-73
  • Lesage P & Destarin M (1996). Measurement of tomato firmness by using a non-destructive mechanical sensor. Postharvest Biology and Technology 8(1): 45-55
  • Lien C C, Ay C & Ting C H (2009). Non-destructive impact test for assessment of tomato maturity. Journal of Food Engineering 91(3): 402-407
  • Mohsenin N N (1970). Physical Properties of Plant and Animal Materials. Gordon and Breach Science Publisher, New York
  • Ortiz-Canavate J, Garcia-Ramos F J & Homer I (2001). Determination of firmness in a fruit packing line using nondestructive impact sensor. In: Fruits, Nuts and Vegetable Production Engineering, 11-14 September, Postdam, Germany, pp. 457-462
  • Schotte S, Belie N D & Baerdemaeker J D (1999). Acoustic impulse-response technique for evaluation and modelling of firmness of tomato fruit. Postharvest Biology and Technology 17(2): 105-115
  • Sirisomboon P, Tanaka M & Kojima T (2012). Evaluation of tomato textural mechanical properties. Journal of Food Engineering 111(4): 618-624
  • Sirisomboon P, Tanaka M, Kojima T & Williams P (2012a). Nondestructive estimation of maturity and textural properties on tomato “Momotaro” by near infrared spectroscopy. Journal of Food Engineering 112(3): 218-226
  • Slaughter D C, Ruiz-Altisent M, Thompson J F, Chen P, Sarig Y & Anderson M (2009). A handheld low-mass impact instrument to measure nondestructive firmness of fruit. Transactions of the ASAE 39(3): 1019-1023
  • Tiwari G, Slaughter D C & Cantwell M (2013). Nondestructive maturity determination in green tomatoes. Postharvest Biology and Technology 86: 221-229
  • USDA (1976). United State Standars for Grade of Fresh Tomatoes. US Dept. Agric., Mktg., ser., Washington D.C., pp.10
  • Van linden V, De Katelaere B, Desmet M & De Baerdemaeker J (2006). Determination of bruise susceptibility of tomato fruit by means of an instrumented pendulum. Postharvest Biology and Technology 40(1): 7-14
  • Yurtlu Y B & Erdoğan D (2005). Domates çeşitlerinde depolama süresinin bazı mekanik özelliklere etkisinin araştırılması. Tarım Bilimleri Dergisi-Journal of
Tarım Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Halit APAYDIN
Sayıdaki Diğer Makaleler

Green long pepper growth under different saline and water regime conditions and usability of water consumption in plant salt tolerance

Ali ÜNLÜKARA, Ahmet KURUNÇ, Bilal CEMEK

Effects of Thidiazuron and Activated Charcoal on in vitro Shoot Proliferation and Rooting of Myrtle (Myrtus communis L.)

Bekir ŞAN, Yaşar KARAKURT, Fatma DÖNMEZ

Tütsülenmiş ve Marine Edilmiş Gökkuşağı Alabalığı (Oncorhynchus mykiss) Filetolarının Soğutulmuş Saklama Süresince Elektroforetik Protein Profilindeki Değişimler

Makbule BAYLAN, Makbule BAYLAN, Gamze MAZI, Numan ÖZCAN, Bahri ÖZCAN, Mustafa AKAR, Ali COŞKUN

Isı Pompalı Kurutucuda Atık Isı Kullanımının Performansa Etkisi ve Deneysel Analizi

Mustafa AKTAŞ, Burak AKTEKELİ

Konserve Ton Balıklarında Melamin Varlığının Kapiler Zon Elektroforez Yöntemi ile Araştırılması

Buket ER DEMİRHAN, Burak DEMİRHAN, Sezen YARIMKAYA BAŞ, Gülderen YENTÜR, Aysel BAYHAN ÖKTEM

Farklı Depolama Koşullarının Arpa ve Mısırın Besin Kaliteleri Üzerindeki Etkileri

Havva POLAT

Effects of different storage conditions on the nutritional qualities of barley and maize

Havva Eylem POLAT

Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae)’nın Farklı Domates Çeşitleri Üzerinde Yaşam Çizelgesi

Demet ÇEKİN, Bülent YAŞAR

Farklı Tuzluluk ve Sulama Rejimi Şartlarında Sivri Biber Gelişimi ve Bitki Tuzluluk Toleransında Su Tüketiminin Kullanılabilirliği

Ali ÜNLÜKARA, Ali ÜNLÜKARA, Ali ÜNLÜKARA, Ahmet KURUNÇ, Bilal CEMEK

Mekanik Hasarsız Çarpma Tekniğiyle Domatesin Sertliğine Göre Sınıflandırılması

Kubilay VURSAVUŞ, Zehan KESİLMİŞ, Hande KÜÇÜKÖNDER