Glifosatın Allium cepa Üzerine Toksik Etkilerinin Araştırılması

Bu çalışmada, Glifosatın Allium cepa L. (Amaryllidaceae) üzerine toksik etkileri araştırılmıştır. Bu amaçla çimlenme yüzdesi, kök uzunluğu, ağırlık kazancı, malondialdehit (MDA) düzeyi, mikronukleus sıklığı (MN), kromozomal anormallikler (CAs) ve mitotik indeks (MI) parametreleri toksisite indikatörü olarak kullanılmıştır. Bu parametrelere ilave olarak glifosat uygulanmış A. cepa’da kök anatomisindeki değişimler de araştırılmıştır. Glifosat uygulamasında 100, 250 ve 500 mg l -1 olmak üzere üç farklı doz kullanılmıştır. Sonuç olarak glifosat uygulanan gruplarda çimlenme yüzdesi, kök uzunluğu, ağırlık kazancı, malondialdehit düzeyi, mikronuklues sıklığı, kromozomal anormallikler ve mitotik indeks parametrelerinde doza bağlı olarak önemli değişimler saptanmıştır. Tüm uygulama gruplarında glifosat uygulaması ile çimlenme yüzdesinin, kök uzunluğunun ve ağırlık kazancının azaldığı belirlenmiştir (P<0.05). MN ve CAs oluşumunda ise artış kaydedilmiştir (P<0.05). Ayrıca glifosatın mitozu baskılayıcı etkiye sahip olduğu ve glifosat uygulaması ile mitotik indeksinde doza bağlı olarak azaldığı görülmüştür (P<0.05). Bununla birlikte 100, 250 ve 500 mg l -1 glifosat uygulamalarının lipit peroksidasyonunu önemli derecede hızlandırdığı ve tüm doz uygulamalarında MDA seviyelerinde artışa neden olduğu belirlenmiştir (P<0.05). Bununla birlikte ışık mikrograflarından belirsiz vaskuler doku ve epidermis tabakası, hücre deformasyonu, anormal nucleus (genellikle düz), ve binükleer hücre gibi anatomik hasarların meydana geldiği gözlenmiştir. Bu sonuçlar ile her bir glifosat doz uygulamasının A. cepa hücreleri üzerine farklı toksik etkiler gösterdiği ve en güçlü toksik etkinin 500 mg l -1 doz uygulamasında oluştuğu gözlenmiştir. 

Investigation of Toxic Effects of the Glyphosate on Allium cepa

In the present study, toxic effects of glyphosate on Allium cepa L. (Amaryllidaceae) cells were investigated. For this aim, we used the germination percentage, root length, seedling weight, malondialdehyde (MDA) level, frequency of micronucleus (MN), chromosomal aberrations (CAs) and mitotic index (MI) as indicators of toxicity. In addition to the analyses mentioned above, we also examined changes in the root anatomy of A. cepa seeds treated with glyphosate. Glyphosate was applied with three different doses (100, 250 and 500 mg l -1). The results showed significant alterations in the germination percentage, root length, seedling weight, MDA level, MN, CAs and MI frequency depending on treatment doses in the glyphosate treated groups. Glyphosate-exposure significantly reduced the germination percentage, root length and seedling weight in all the treatment groups (P<0.05). But, an increase in the MN and CAs formation (P<0.05) was observed. It was also found that glyphosate has a mitodepressive action on mitosis, and the MI was decreased depending on the dose of applied-glyphosate (P<0.05). Besides, 100, 250 and 500 mg l -1 doses of glyphosate significantly enhanced the lipid peroxidation and caused an increase in malondialdehyde (MDA) levels at each dose treatment (P<0.05). Moreover, light micrographs showed anatomical damages such as unclear vascular tissue, unclear epidermis layer, cell deformation, unusual form of cell nucleus (usually flat) and binuclear cells. Each dose of glyphosate caused severe toxic effects on A. cepa cells and the strongest toxic effect was observed at the dose level of 500 mg l -1. 

___

  • Baig M N, Lloyd Darwent A, Neil Harker K & Odonovan J T (2003). Preharvest applications of glyphosate affect emergence and seedling growth of field Pea (Pisum sativum). Weed Technology 17: 655-665
  • Benachour N & Seralini G E (2009). Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and placental cells. Chemical Research in Toxicology 22: 97-105
  • Benedetti A, De Lourdes Vituri C, Trentin A G, Dominguesc M A C & Alvarez-Silva M (2004). The effects of sub-chronic exposure of Wistar rats to the herbicide glyphosate-biocarb. Toxicology Letters 153: 227-232
  • Blokhina O B, Chirkova T V & Fagerstedt K V (2001). Anoxic stress leads to hydrogen peroxide formation in plant cells. Journal of Experimental Botany 52: 1179-1190
  • Bradberry S, Proudfoot A T & Vale J A (2004). Glyphosate poisoning. Toxicological Reviews 23: 159-167
  • Carlson S J & Donald W W (2006). Glyphosate effects on Canada thistle (Cirsium arvense) roots, root buds, and shoots. Weed Research 28: 37-45 De Roos A J, Zahm S H, Cantor K P, Weisenburger D
  • D, Holmes F F, Burmeister L F & Blair A (2003). Integrative assessment of multiple pesticides as risk factors for non-Hodgkin’s lymphoma among men. Occupational and Environmental Medicine 60:11- 15
  • Dimitrov B D, Gadeva P G, Benova D K & Bineva M V (2006). Comparative genotoxicity of the herbicides Roundup, Stomp and Reglone in plant and mammalian test systems. Mutagenesis 21: 375- 382
  • Draggan S (2010). “Types of pesticides”, In: Encyclopedia of Earth. Eds. Cutler J. Cleveland (Washington, D.C.: Environmental Information Coalition, National Council for Science and the Environment), Available:http://www.eoearth.org/ article/Types_of_pesticides>
  • Ecobichon DJ (2010). Toxic effects of pesticides, 22: 763-809. Available:http://www.scribd.com/doc /26511158/Toxic-Effects-of-Pesticides Fenech M, Chang W P, Kirsch-Volders M, Holland N,
  • Bonassi S & Zeiger E (2003). Human micronucleus project. HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutation Reserach 534: 65-75
  • Hamel G (2010). What Are the dangers of herbicide?, Available:http://www.ehow.com/facts_6023153_da ngers-herbicide_.html
  • Hardell L, Eriksson M & Nordstrom M (2002). Exposure to pesticides as risk factor for nonHodgkin’s lymphoma and hairy cell leukemia: pooled analysis of two Swedish case-control studies. Leukemia Lymphoma 43: 1043–1049 Ho M W & Cummins J (2010). Glyphosate toxic & Roundup worse, Available:http://www. percyschmeiser.com/Toxic.html
  • Inceer H, Ayaz S & Beyazoglu O (2003). Cytogenetic effects of copper chloride on the root tip cells of Helianthus annuus L. Turkish Journal of Biology 27: 43-46
  • Jeffery L S, English J R & Connell J (1981). The effects of fall application of glyphosate on corn (Zea mays), soybeans (Glycine max), and johnsongrass (Sorghum halepense). Weed Science 29: 190-195
  • Klingman D L & Murray J J (1976). Germination of seeds of turfgrasses as affected by glyphosate and paraquat. Weed Science 24: 191-193 Makbul S, Kandemir A, Turkmen Z, Beyazoglu O
  • (2008). Morphological and anatomical features of Verbascum alyssifolium Boiss. and Verbascum calycosum Hausskn. Ex Murb. (Scrophularicaae). Herbal Journal System Botanic 15: 125-140 Manas F, Peralta L, Raviolo J, Ovando H G, Weyers A,
  • Ugnia L, Cid M G, Larripa I & Gorla N (2009). Genotoxicity of glyphosate assessed by the comet assay and cytogenetic tests. Environmental Toxicology and Pharmacology 28: 37-41
  • Marc J, Le Breton M, Cormier P, Morales J, Belle R & Mulner-Lorillo O A (2005). Glyphosate-based pesticide impinges on transcription. Toxicology and Applied Pharmacology 203: 1-8 Marchiosi R, Ferrarese M L L, Bonini E A, Fernandes
  • N G, Ferro A P & Filho O F (2009). Glyphosateinduced metabolic changes in susceptible and glyphosate-resistant soybean (Glycine max L.) roots. Pesticide Biochemistry and Physiology 93: 28-33
  • McDuffie H, Pahwa P, McLaughlin J R, Spinelli J J, Fincham S, Dosman J A, Robson D, Skinnider L F & Choi N W (2001). Non-Hodgkin’s lymphoma and specific pesticide exposures in men: crossCanada study of pesticides and health. Cancer Epidemiology Biomarkers & Prevention 10: 1155- 1163
  • McLaren G & Don R (2004). The effect of glyphosate treatment on the germination potential of resultant crops, ISTA Seed Symposium, Budapest
  • Meng Q, Zou J, Zou J, Jiang W & Liu D (2007). Effect of cu2+ concentration on growth, antioxidant enzyme activity and malondialdehyde content in garlic (Allium sativum L.). Acta Biologica Cracoviensia Series Botanica 49: 95-101
  • Metin N, Kubas A, Hurma H &. Erbay E R (2003). Pesticide usage and its effects on the environment in thrace region. The Journal of Environmental Protection and Ecology 4: 328-333
  • Miteva L P E, Ivanov S V & Alexieva V S (2010). Alterations in glutathione pool and some related enzymes in leaves and roots of Pea plants treated with the herbicide glyphosate. Russian Journal of Plant Physiology 57: 131-136
  • Monsanto Company (1985). Toxicology of Glyphosate and Roundup Herbicide. St. Louis, MO,.10-97
  • Nair V & Turner G E (1984). The thiobarbiturie acid test for lipid peroxidation: Structure of the adduct with malondialdehyde. Lipids 19: 84-85
  • Piesova E (2005). The effect of glyphosate on the frequency of micronuclei in bovine lymphocytes in vitro. Acta Veterinaria - Beograd 55: 101-109 Pline W A, Wilcut J W, Edmisten K L & Wells R
  • (2002). Physiological and morphological response of glyphosate-resistant and non-glyphosate-resistant cotton seedlings to root-absorbed glyphosate. Pesticide Biochemistry and Physiology 73: 48-58 Rank J, Jensen A G, Skov B, Pedersen L H & Jensen K
  • (1993). Genotoxicity testing of the herbicide Roundup and its active ingredient glyphosate isopropylamine using the mouse bone marrow micronucleus test, Salmonella mutagenicity test, and Allium anaphase-telophase test. Mutation Research 300: 29-36
  • Richard S, Moslemi S, Sipahutar H, Benachour N & Seralini GE (2005). Differential effects of glyphosate and roundup on human placental cells and aromatase. Environmental Health Perspectives 113: 716-720
  • Sanders H O (2010).Toxicity of pesticides to the crustacean Gammarus lacustris, Technical papers of the bureau of sport fisheries and wildlife, No. 25. US Dept. of Interior Fish and Wildlife Service, Washington D.C Sergiev I G, Alexieva V S, Ivanov S V, Moskova I I &
  • Karanov E N (2006). The phenylurea cytokinin 4PU–30 protects maize plants against glyphosate action. Pesticide Biochemistry and Physiology 85: 139–146
  • Simmons L (2010). Herbicide Safety, Available: http://www.ehow.com/way_5417453_herbicidesafety.html Staykova T A, Ivanova EN & Velcheva I G (2005). Cytogenetic effect of heavy metal and cyanide in contamined waters from the region of Southwest Bulgaria. Journal of Molecular Cell Biology 4: 41- 46
  • Thomas W E, Pline-Srnic W A, Viator R P & Wilcut J W (2005). Effects of glyphosate application timing and rate on sicklepod (Senna obtusifolia) fecundity. Weed Technology 19: 55-61
  • Türkmen Z, Çavuşoğlu K, Çavuşoğlu K, Yapar K & Yalçın E (2009). Protective role of Royal Jelly (honeybee) on genotoxicity and lipid peroxidation, induced by petroleum wastewater, in Allium cepa L. root tips. Environmental Technology 30: 1205-1214
  • Unyayar S, Celik A, Cekic F O & Gozel A (2006). Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba. Mutagenesis 21: 77-81
  • Vigfusson N V & Vyse E R (1980). The effect of the pesticides, Dexon, Capton and Roundup on sisterchromatid exchanges in human lymphocytes in vitro. Mutation Research 79: 53-57
  • Wei O X (2004). Mutagenic effects of chromium trioxide on root tip cells of Vicia faba. Journal of Zhejiang University Science 5: 1570-1576
  • Yenish J P& Young F L (2000). Effect of preharvest glyphosate application on seed and seedling quality of spring wheat (Triticum aestivum). Weed Technology 14: 212-217
  • Yousef M I, Bertheussen K, Ibrahim HZ, Helmi S, Seehy MA & Salem MH (1996). A sensitive sperm-motility test for the assessment of cytotoxic effect of pesticides. The Journal of Environmental Science and Health Part B 31: 99-115
  • Weed Science Society of America (1994). Herbicide Handbook, Seventh Edition. Champaign, IL, 10-59