ASTER Uydu Görüntüsünden Yer Yüzey Sıcaklığını Hesaplayan Bir Yazılım Aracı Geliştirilmesi

Çevresel verinin toplanması, analizi ve modellemesinde uzaktan algılama çok önemli ve iyi bilinen bir araç olmasına rağmen, termal kızılötesi (TIR) uzaktan algılamasına gereken önem verilmemiştir. Küresel çevre değişimi, iklim modelleri ve insan-çevre etkileşimleri gibi birçok çevresel çalışmalar için yer yüzey sıcaklığı (LST) önemli bir parametredir. Bu çalışmada, Visual Basic NET programlama dili kullanılarak ASTER uydu görüntüsünden yer yüzey sıcaklığını hesaplayan bir yazılım aracı geliştirilmiştir. Bu araç beş modülden oluşmaktadır: 1- Dijital Sayıları (DN) Radyansa dönüştürme, 2- Yüzey yansıma değerinin hesaplanması, 3- NDVI’ın hesaplanması, 4- Yayınırlığın hesaplanması ve 5- Sıcaklığın hesaplanması. Bu yazılım aracında Jimenez Munoz ve Sobrino’nun ASTER uydu görüntüsünden yer yüzey sıcaklığının hesaplanması için geliştirdiği Tek Kanal (Single Channel) Algoritması kullanılmıştır. Bu programın termal çevre üzerine çalışan bilim insanları veya konuyla ilgilenen kişiler için faydalı olabileceği ümit edilmektedir.

___

  • Abrams M, Hook S & Ramachandran B (2008). ASTER user handbook: Version 2, Jet Propulsion Laboratory, Pasadena, CA, USA
  • Berk A, Anderson G, Acharya P, Hoke M, Chetwynd J, Bernstein L, Shettle E, Matthew M & Adler-Golden S (2003). MODTRAN4 Version 3 Revision 1 User’s Manual, Air Force Res. Lab., Hanscom Air Force Base, Mass
  • Carlson T N & Ripley D A (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment 62: 241- 252
  • Chavez P S (1996). Image-based atmospheric correction– revisited and improved. Photogrammetric Engineering & Remote Sensing 62(9): 1025-1036
  • Genc L, Sacan M, Turhan H, Asar B (2010). Arazi örtüsünün Landsat TM uydu görüntüleri yardımıyla belirlenmesi. Tarım Bilimleri Dergisi – Journal of Agricultural Sciences 16: 213-224
  • Ghulam A (2009). How to calculate reflectance and temperature using ASTER data, Center for Environmental Sciences at Saint Louis University. http://www.pancroma.com/ downloads/ASTER%20 Temperature%20and%20Reflectance.pdf, time: 15 March 2012) (Access
  • Gillespie A, Rokugawa S, Matsunaga T, Cothern J S, Hook S & Kahle A B (1998). A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing 36(4): 1113–1126
  • Gustafson W T, Gillespie A & Yamada G J (2006). Revisions to the ASTER temperature/emissivity separation algorithm. In: Proceedings of Recent Advancesin Quantitative Remote Sensing, Valencia, Spain, September 25–29, pp. 770–775
  • Jimenez-Munoz J C & Sobrino J A (2003). A generalized single-channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research 108(D22): 4688, doi:10.1029/2003JD003480
  • Jimenez-Munoz J C & Sobrino J A (2007). Feasibility of retrieving land-surface temperature from ASTER TIR bands using two-channel algo-rithms: A case study of agricultural areas. IEEE Geoscience and Remote Sensing Letters 4(1): 60–64
  • Jimenez-Munoz J C & Sobrino J A (2010). A single- channel algorithm for land surface temperature retrieval from ASTER data. IEEE Geoscience and Remote Sensing Letters 7(1): 176-179
  • Jimenez-Munoz J C, Sobrino J A, Gillespie A, Sabol D & Gustafson W T (2006). Improved land surface emissivities over agricultural areas using ASTER NDVI. Remote Sensing of Environment 103(4): 474–
  • Jimenez-Munoz J C, Cristobal J, Sobrino J A, Soria G, Ninyerola M & Pons X (2009). Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data. IEEE Transactions on Geoscience and Remote Sensing 47(1): 339–349
  • Milder J C (2008). ASTER processing method. Department of Natural Resource, Cornell University
  • Oguz H (2013). LST Calculator: a program retrieving land surface temperature from Landsat TM/ ETM+ Imagery. Environmental Engineering and Management Journal 12(3): 549–555
  • Sobrino J A, Jimenez-Munoz J C, Balick L, Gillespie A, Sabol D & Gustafson W T (2007). Accuracy of ASTER level-2 thermal-infrared standard products of an agricultural area in Spain. Remote Sensing of Environment 106(2): 146–153
  • Sobrino J A & Raissouni N (2000). Toward remote sensing methods for land cover dynamic monitoring. Application to Morocco. International Journal of Remote Sensing 21: 353-366
  • Song C, Woodcock C E, Seto K C, Lenney M P & Macomber S A (2001). Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sensing of Environment 75: 230-244
  • Xiao R, Ouyang Z, Zheng H, Li W, Schienke E W & Wang X (2007). Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China. Journal of Environmental Science (China) 19: 250-256
  • Valor E & Caselles V (1996). Mapping land surface emissivity from NDVI: Application to European, African and South American areas. Remote Sensing of Environment 57: 167-184
  • Van de Griend A A & Owe M (1993). On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. International Journal of Remote Sensing 14(6): 1119- 1131
  • Zhang J, Wang Y & Li Y (2006). A C++ program for retrieving land surface temperature from the data of Landsat TM/ETM+ band 6. Computers & Geosciences 32: 1796-1805