MDF atıklarının odun plastik kompozitlerin üretiminde değerlendirilmesi

Bu çalışmada, orman endüstrisinin ve mobilya fabrikalarının üretim esnasında açığa çıkan lif levha atıklarının odun plastik kompozitlerin üretiminde odun unu yerine potansiyel olarak değerlendirilmesi hedeflenmiştir. Odun plastik kompozit (OPK) üretiminde polimer matris olarak polipropilen (PP) seçilmiş ve %10 ile %50 arasında lif levha atık unu ile sekiz farklı parametrede çift vidalı ekstrüder kullanılarak pellet üretimi gerçekleştirilmiştir. Üretilen pelletlerden 25 cm x 25 cm ve 2 mm ebatlarında ASTM D4703-10’a göre sıcak pres kalıplama tekniği yöntemiyle odun plastik kompozitler üretilmiştir. Her bir karışım parametresi için üç levha üretilmiş ve bunlardan on adet çekme, eğilme ve darbe direnç test örnekleri hazırlanmıştır. Hazırlanan örneklerin çekme, eğilme ve darbe dayanımı testleri sırası ile ASTM D638, ASTM D6109 ve ASTM256’ya göre tespit edilmiştir. Kopma yüzeyleri taramalı elektron mikroskobu (SEM) ile karakterize edilmiştir. MDF unu katılım oranının artmasına bağlı olarak çekme ve darbe direnç değerlerinde belirgin düşüşler gözlenmiştir. MDF unu takviyeli kompozitlerin elastikiyet modülü ve eğilme direnci değerleri plastik keresteler için ASTM D 6662 standardında istenen değerlerin çok üstünde olup plastik kereste kullanım alanlarında kullanılabileceği sonucuna ulaşılmıştır.

Utilisation of MDF waste for wood plastic composites production

The aim of this study was to evaluate the potential utilization of fibre board waste generated from forest industry and furniture manufacturers in the production of wood plastic composite (WPC) for replacing wood flour. For production of WPC, polypropylene (PP) was chosen as polymer matrix, and eight different compositions were prepared with the co-rotating twin- screw extruder to compound them into pellets. WPC were produced at the size of 25 cm x 25 cm and 2 mm from these pellets (MDF flour loading varies 10 to 50 weight %) by hot press with the compression moulded technique according to ASTM D4703- 10. For each composition, three composites were produced and ten specimens were prepared from these composites for tensile, flexural and notched impact specimens The tensile, flexural and impact properties of the manufactured samples were determined in accordance with ASTM D638, ASTM D6109, and ASTM D256, respectively. Morphological properties of the samples were characterized with scanning electron microscopy (SEM) analysis. Tensile and impact strength values decreased with increasing MDF flour loading whereas MOE values were improved with addition of MDF flour. All produced MDF flour filled composites showed better MOE and bending strength properties than ASTM D6662-13 standard requirements for polyolefin-based plastic lumber.

___

  • American Society for Testing and Materials, 2001; ASTM D638, Standard test methods for tensile properties of plastics. ASTM, West Conshohocken.
  • American Society for Testing and Materials, 2005; ASTM D6109, Standard test methods for flexural properties of unreinforced and reinforced plastic lumber and related products. ASTM, West Conshohocken.
  • American Society for Testing and Materials, 2005; ASTM D256, Standard test methods for impact resistance of plastics and electrical insulating materials. ASTM, West Conshohocken.
  • American Society for Testing and Materials, 2010; ASTM D4703-10, Standard practice for compression molding thermoplastic materials into test specimens, plaques, or sheets, ASTM, West Conshohocken.
  • American Society for Testing and Materials, 2013; ASTM D 6662, Standard Specification for Polyolefin-Based Plastic Lumber Decking Boards, ASTM, West Conshohocken.
  • Ashori, A. 2008. Wood-plastic composites as promising green-composites for automotive industries. Bioresource Technology, 99: 4661-4667.
  • Bromhead, A., 2003. Reducing Wood Waste in Furniture Manufacture. Fauna & Flora International, Cambridge.
  • Bledzki, A.K., Reihmane, S., Gassan, J., 1998. Thermoplastic reinforced with wood fillers: A literature review, Polymer Plastic Technology and Engineering, 37: 451-468.
  • Chaharmahali, M., Tajvidi, M., Najafi, S.K:, 2008. Mechanical properties of wood plastic composite panels made from waste fibreboard and particleboard. Polymer Composites, 29(6): 606-610.
  • Çetin, N.S., Özmen, N., Narlıoğlu, N., Çavuş, V., 2013. Ağaç kabuğunun YYPE kompozitlerin mekanik özellikleri üzerine etkileri. II. Ulusal Ege Kompozit Malzemeler Sempozyumu, 452-463.
  • Dayanıklıoğlu, S. 2013. Türkiye’de Yonga ve Lif Levha Sektörü. Mobilya Dekorasyon. http://www.mobilyadergisi.com.tr/default.asp?page=gun cel&Gunceltur=235, Erişim: 10.10.2013
  • Hillig, E., Iwakiri, S., Andrade, M.Z., Zatera, A.J., 2008. Characterization of composites made from high density polyethylene and furniture industry sawdust. Revista Arvore, 32(2): 299-310.
  • İlhan, R., Burdurlu, E., Baykan, İ., 1990. Ağaç işlerinde kesme teorisi ve mobilya endüstrisi makineleri. Bizim Büro Basımevi, Ankara.
  • Jayaraman, K., Bhattacharyya, D., 2004. Mechanical properties of wood fibre-waste plastic composite materials, Resources Conservation and Recycling, 41: 307-319.
  • Najafi, A., Khademi-Eslam, H., 2011. Lignocellulosic filler/recycled HDPE composites: Effect of filler type on physical and flexural properties. Bioresources, 6(3): 2411-2424.
  • Klyosov, A.A., 2007. Wood Plastic Composites, John Wiley and Sons, New Jersey.
  • Komwood, 2013. Ahşap Plastik Kompozit Nedir?, http://www.komwood.com.tr/TR/15/Ahsap-Plastik- Kompozit-Nedir?.htm, Erişim : 03.09.2013.
  • Shams, M., Vaysi, R., Hossinzaheh, S., 2010. Study on some mechanical properties of composites made from the flour of MDF flour/reed flour and recycled polypropylene, Proceedings of International Convention of Societyof Wood Science and Technology and United Nations Economic Commission for Europe – Timber Committee, Geneva.
Türkiye Ormancılık Dergisi-Cover
  • ISSN: 1302-7085
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2000