Çankırı yöresi sarıçam meşcereleri için dinamik bonitet endeks modellerinin otoregresif modelleme ile geliştirilmesi

Bu çalışmada, bonitet endeks modellerindeki en güncel ve gelişmiş yöntemler olan Genelleştirilmiş Cebirsel Fark Yaklaşımı ve Otoregresif modelleme yaklaşımları kullanılarak; Çankırı yöresi Sarıçam meşcereleri için dinamik bonitet endeks modelleri geliştirilmesi amaçlanmıştır. Bu amaçla, çalışma alanındaki 112 adet ağaçta yapılan gövde analizi verisi kullanılarak Bertalanffy-Richards, M1, ve Hossfeld, M2-M3, büyüme fonksiyonlarının Genelleştirilmiş Cebirsel Fark yaklaşımı ile elde edilmiş model yapıları gerek Doğrusal Olmayan Regresyon Analizi gerekse Otoregresif Modelleme ile tahmin edilmiş ve çeşitli model başarı ölçütleri ile karşılaştırılmıştır. En başarılı olarak belirlenen Hossfeld fonksiyonu, M3, için doğrusal olmayan regresyon analizi ile elde edilen belirtme katsayısı değeri, R2, 0.9336 ve durbin-watson test istatistiği değeri ise; 1.2890 hesaplanırken, Otoregresif modelleme ile elde edilen belirtme katsayısı değeri; 0.9449 ve durbin-watson test istatistiği değeri ise; 1.9903 olarak elde edilmiş olup, böylece Otoregresif modelleme ile zaman serisi niteliğindeki gövde analizi verilerindeki seri- korelasyon problemine bir çözüm sağlanmıştır. Ayrıca, geliştirilen dinamik bonitet endeks modeli; polimorfizim, çoklu asimptot, standart yaşa bağlı değişmezlik “base-age invariable” özelliklerini gibi yaş-üst boy ilişkilerinin modellenmesinde beklenen büyüme kanuniyetleri uyumlu sonuçlar elde edilmiştir

Developing dynamic site index models by using autoregresive modeling approach for scots pine stands in Çankırı forests

In this study, it is aimed that the dynamic site index models for scots pine (Pinus sylvestris L.) stands in Çankırı forests were developed by using Generalized Algebraic Difference Approach, GADA, and Autoregresive Modeling Approach which are up-to-date and complex methods for site index modeling. In this aiming, the model structures of Bertalanffy-Richards, M1, ve Hossfeld, M2-M3, based on Generalized Algebraic Difference Approach were developed and compared with both Nonlinear regression analysis and Autoregresive modeling approach by using 112 stem analysis obtained from studied area. The best predictive model, Hossfeld model, M3, produced the R2 value of 0.9336 with D.W. of 1.2890 for nonlinear regression analysis and the R2 value of 0.9449 with D.W. of 1.9903 for Autoregressive modeling, approach, thus this modeling approach has provided a solutions for serial-correlations, autocorrelations, originating from stem analysis data being as time series property. Additionally, the dynamic site index model developed has produced compatible predictions with the expected growth laws, e.g. polymorphism, multiple asymptote and base-age invariable properties in modeling relationships between dominant height and ages.

___

  • Adame, P., Cañellas, I., Roig, S., Del Rio, M., 2006. Modeling dominant height growth and site index curves for Rebollo oak (Quercus pyrenaica Willd.). Ann. For. Sci. 63:929-940.
  • Álvarez-González, J., Ruiz Gonzalez, A., Rodriguez Soalleiro, R., Barrio Anta, M., 2005. Development of ecoregion-based site index models for even-aged stands of Pinus pinaster Ait. in Galicia (northwestern Spain). Ann. For. Sci., 62:117-129.
  • Akalp, T., 1978. Anomorfik ve polimorfik yöntemlerle bulunmuş bonitet eğrilerinin karşılaştırılması. İ.Ü. Orman Fakültesi Dergisi, 28:213-232.
  • Bailey, R.L., Clutter, J.L., 1974. Base-Age invariant polymorphic site curves. Forest Science, 20:155-159.
  • Bravo-Oviedo, A., del Río, M., Montero, G., 2007. Geographic variation and parameter assessment in generalized algebraic difference site index modeling. Forest Ecology and Management, 247(1-3):107-119.
  • Benito, D.M., Izquierdo, G.G., Rio, M.D. Cañellas, I., 2008. Long-term trends in dominant-height growth of black pine using dynamic models. Forest Ecology and Management, 256:1230-1238.
  • Carmean W.H., 1972. Site index curves for upland oaks in the central states. Forest Science, 18:109-120.
  • Cieszewski, C.J., 1999. The Algebraic Difference Approach Improves Fixed Base-Age Site Models Based On Chapman-Richard Function, PMRC Technical Report 1999-9.
  • Cieszewski, C.J., 2001. Three methods of deriving advanced dynamic site equations demonstrated on inland douglas- fir site curves. Canadian Journal of Forest Research, 31:165-173.
  • Cieszewski, C.J., 2002. Comparing fixed and variable-base- age site equations having single versus multiple asymptotes. Forest Science, 48(1):7-23.
  • Cieszewski, C.J., 2003. Developing a well-behaved dynamic site equation using a modified hossfeld IV function Y3 = (Axm)/ (C + Xm-1), a simplified mixed-model and scant subalpine fir data. Forest Science, 49:539-554.
  • Cieszewski, C.J., 2004. GADA Derivation of Dynamic Site Equations with Polymorphism and Variable Asymptotes From Richards to Weibull and Other Exponential Function., Plantation Management Research Cooperative, 10 s., Athens.
  • Cieszewski, C.J., Bailey, R.L., 2000. Generalized algebraic difference approach: theory based derivation of dynamic site equations with polymorphism and variable asymptotes, Forest Science, 46:116-126.
  • Cieszewski, C.J., Nigh, G., 2002. A dynamic equation for a Sitka Spruce height-age model. Forest Chronicle 78(5): 1-5.
  • Cieszewski, C.J., Strub, M., 2008. Generalized algebraic difference approach derivation of dynamic site equations with polymorphism and variable asymptotes from exponential and logarithmic functions. Forest Science, 54:303-315.
  • Cieszewski, C.J., Strub, M., Zasada, M.J., 2007. New dynamic site equation that fits best the schwappach for scots pine (Pinus Slyvestris L.) in central Europe. Forest Ecology and Management, 23:83-93.
  • Clutter J.L., Fortson, J.C., Peinar, L.V., Brister, G.H., Bailey, R.L., 1983. Timber Management A Quantitative Approach, Wiley, 333 s., New York.
  • Diéguez-Aranda, U., Burkhart, H.E., Rodriguez-Soalleiro, R., 2005. Modeling dominant height growth of radiata pine (Pinus radiata D. Don) plantations in north-western Spain. Forest Ecology and Management, 215:271-284.
  • Diéguez-Aranda, U., Grandas-Arias, J.A., Álvarez- González, J.G. Gadow, K.V., 2006. Site quality curves for birch stands north-western spain. Silva Fennica, 40(4):631-644.
  • Doğanay, B., 2007. Uzunlamasına çalışmaların analizinde karma etki modelleri. A.Ü. Sağlık Bilimleri Enstitüsü Yüksek Lisans Tezi, 94 s. Ankara.
  • Eraslan, İ., 1982. Orman Amenajmanı. İstanbul Üniversitesi Orman Fakültesi, Yayın No:318.
  • Ercanlı, İ., 2010. Trabzon ve Giresun orman bölge müdürlükleri sınırları içerisinde yer alan Doğu Ladini (Picea orientalis (L.) Link)-Sarıçam (Pinus sylvestris L.) karışık meşcerelerine ilişkin büyüme modelleri. Doktora Tezi, K.T.Ü. Fen Bilimleri Enstitüsü, Trabzon.
  • Fox, J., 1997. Applied Regression Analysis, Linear Models, and Related Methods. Thousand Oaks, CA: Sage. Garcia, O., 1981. Simplified Method of Moments Estimation for The Weibull Distribution. New Zelland Journal of Forest Science, 11(3):304-306.
  • Gregoire, T., Schabenberger, O., Barret, J., 1995. Linear modelling of irregularly spaced, unbalanced, longitudinal data from permanent-plot measurements. Can. J. For. Res., 25:137-156.
  • Günel, A., 1982. Orman Hasılat Bilgisi Ders Notları. İ.Ü. Orman Fakültesi (Basılmamıştır), 89 s.
  • İyit, N., 2008. İlişkili veri analizinde lineer karma modellerin yapılandırılması. S.Ü. Fen Bilimleri Enstitüsü Doktora Tezi, 162 s., Konya.
  • İyit, N., Genç, A., Arslan, F., 2006. Analysis of repeated measures for continuoes response data using general linear model and mixed models. Proceedings of The İnternational Conference on Modeling And Simulation, 937-942, Konya.
  • Kalıpsız, A., 1998. Orman Hasılat Bilgisi. İ.Ü. Orman Fakültesi Yayınları, No:4060/448, 349 s., İstanbul.
  • Monserud, R.A., 1984. Height growth and site index curves for inland douglas-fir based on stem analysis data and forest habitat type. Forest Science, 30:943-965.
  • Nord-Larsen, T., 2006. Developing dynamic site index curves for European beech (Fagus sylvatica L.) in Denmark. Forest Sci., 52:173-181.
  • Parresol B.R., Vissage J.S., 1998. White Pine Site Index for The Southern Forest Survey, USDA For. Serv. Res. Pap. SRS-10.
  • SAS Institute Inc. 2004. SAS/ETS® 9.1 User’s Guide. Cary, NC: SAS Institute Inc.
  • Searle, S.R., Casella, G., McCulloch, C.E., 1992. Variance Components. John Wiley and Sons Inc. USA.
  • Spur, S.H., 1952. Forest Inventory. Ronald Press, 476 s., New York.
  • Trincado, G.V., Kiviste, A., Gadow, K.V. 2003. Preliminary site index models for native Roble (Nothofagus obliqua) and Rauli (N.alpina) in Chile. New Zeland. J.For.Res- JPN 32(3):322-333.
  • Ye, S., 2005. Covariance structure selection in linear mixed models for longitudinal data. M.Sc. Thesis, Department of Bioinformatics and Biostatistics, University of Lousville, Kentucky, 230 p., USA.