Yeni Nesil Enerjik 1(3-klorofenil)-1H-tetrazol'ün Sentezi, Karakterizasyonu, Termokinetik Analizi ve Enerjik Performans Özellikleri

Azotça zengin, yeni nesil çevre dostu 1(3-klorofenil)-1H-tetrazol maddesi sentezlenmiş ve yapısı Tek kristal X- ışını kırınımı, 1H-NMR, Kızılötesi spektroskopisi, Diferansiyel Taramalı Kalorimetre ile karakterize edilmiştir. Crystal Explorer 17 programı kullanılarak hesaplanan 1(3-klorofenil)-1H-tetrazol kristalinin Hirshfeld yüzey analizi sonucunda moleküller arası etkileşimlerinin C...C (% 8.6), C...H (% 4.6), N...H (% 19.4), N...N (% 19.4), Cl...H (% 12.7) ve H...H (% 12.5) atomları arasında olduğu görülmüştür. Kütle kaybı, teorik hesaplamalar ve DSC cihazında ölçülen ısı dikkate alınarak termokinetik analizi yapıldığında maddenin ekzotermik bir tepkimeyle termal olarak bozunduğu ve en olası termal parçalanma ürünlerinin 3-klorofenil radikali ve tetrazol radikali olduğu belirlenmiştir. EXPLO5 V6.03 programı kullanılarak patlama hızı 4409 m/s, patlama basıncı 5.4 GPa ve oksijen dengesi -141.742 olarak hesaplanmıştır. Yapılan bu yeni azotça zengin enerjik madde çalışması ile maddenin kristal yoğunluğu, oksijen dengesi, erime noktası, ayrışma sıcaklığı, termokinetik analizi, patlama performansı (hız, basınç) gibi önemli fiziksel ve kimyasal özellikleri belirlenmiştir. Tasarlan yeni nesil enerjik madde çevre dostu maddelere alternatif bir enerjik madde örneği sunmaktadır. Bu sonuçlar, gelecekteki yeni nesil enerjik materyallerin tasarımında önemli bir hususu vurgulamaktadır.

Synthesis, Characterization, Thermokinetic Analysis and Energetic Performance Properties of New Generation Energetic 1 (3-chlorophenyl) -1H- tetrazole

1 (3-chlorophenyl)-1H-tetrazole, Nitrogen-rich and new generation environmentally friendly, was synthesized and characterized via single crystal X-ray diffraction, 1H-NMR, Infrared spectroscopy, Differential scanning calorimetry techniques. Hirshfeld surfaces and associated fingerprint plots of the compound were calculated using the Crystal Explorer 17 program and the results indicated that the structures are stabilized by C...C (% 8.6), C...H (% 4.6), N...H (% 19.4), N...N (% 19.4), Cl...H (% 12.7) and H...H (% 12.5) intermolecular interactions. Considering mass loss, theoretical calculations and thermo-kinetic analysis, measured heat in the DSC device, 1 (3-chlorophenyl)-1H- tetrazole was decomposed by an exothermic reaction and the most likely thermal decomposition products were 3-chlorophenyl radical and tetrazole radical. Using the EXPLO5 V6.03 program, the detonation velocity was calculated as 4409 m/s, the explosion pressure as 5.4 GPa and the oxygen balance as -141.742. With the new energetic nitrogen-rich work obtained, important physical and chemical properties such as crystal density, oxygen balance, melting point, decomposition temperature, thermos-kinetic analysis, explosion performance (velocity, pressure) have been determined. These results highlight an important consideration in the design of future alternative new generation energetic materials.

___

  • [1] A. Becuwe, A. Delclos,“Low‐sensitivity explosive compounds for low vulnerability warheads.”, Propell. Explos. Pyrotech., 18(1), 1-10, 1993.
  • [2] A. Zhurova, V. V. Zhurov and A. A. Pinkerton, “ Structure and Bonding in β-HMX-Characterization of a Trans-Annular N...N Interaction.”, JACS, 129(45), 13887-13893, 2007.
  • [3] H. Östmark, S. Wallin, and P. Goede,” High energy density materials (HEDM): overview, theory and synthetic efforts at FOI.”, CEJEM, 4(1-2), 83-108, 2007.
  • [4] T. Klapötke, C. Janiak, and R. Alsfasser, Moderne Anorganische Chemie, Berlin:Walter de Gruyter, 2007.
  • [5] R. P. Singh, R. D. Verma, D. T. Meshri, J. N. M. Shreeve, “Energetic nitrogen-rich salts and ionic liquids.” Angew. Chem., 45(22), 3584-3601, 2006.
  • [6] T. M. Klapötke, “New nitrogen-rich high explosives”, High Energy Density Materials, Springer, Berlin: Heidelberg, , 85-121, 2007.
  • [7] N. Şen, “Characterization and properties of a new energetic co-crystal composed of trinitrotoluene and 2,6-diaminotoluene”, J. Mol. Struct. 1179, 2019.
  • [8] N. Şen, “A 1:1 energetic co-crystal formed between trinitrotoluene and 2,3- diaminotoluene”, Mac. J. Chem Chem. Eng. 37, 2018.
  • [9] S.I. Bozkus, K.S. Hope, B. Yüksel, N. Atҫeken, H. Nazır, O. Atakol, N. Şen,” Characterization and properties of a novel energetic co-crystal formed between 2,4,6-trinitrophenol and 9-bromoanthracene”, J. Mol. Struct., 1179, 2019.
  • [10] N. Şen, H. Nazır, N. Atҫeken, K.S. Hope, N. Acar, O. Atakol, “Synthesis, characterisation and energetic performance of insensitive energetic salts formed between picric acid and 2,3-diaminotoluene, 2,4-diaminotoluene”, J. Mol. Struct., 1205, 2020.
  • [11] S. Konar, A.A.L. Michalchuk, N. Şen, C.L. Bull, C.A. Morrison, C.R. Pulham, “Highpressure study of two polymorphs of 2, 4, 6-trinitrotoluene using neutron powder diffraction and density functional theory methods”, J. Phys. Chem., C 123 ,2019.
  • [12] M. Jaidann, S. Roy, H. Abou-Rachid and L. S. Lussier, “A DFT theoretical study of heats of formation and detonation properties of nitrogen-rich explosives”, J. Hazard. Mater., 176(1-3), 165-173, 2010.
  • [13] T. Clark, M. Hennemann, J. S. Murray, P. Politzer, “ Halogen bonding: the σ-hole”, J. Mol. Model, 13, 291-296, 2007.
  • [14] M. B. Talawar, R. Siyabalan, T. Mukundan, H. Muthurajan, A.K. Sikder, B.R. Gandhe, A. Rao, “ Environmentally compatible next generation green energetic materials (GEMs)”, . Journal of Hazardous Materials, 151(2-3), 289-305, 2008.
  • [15] G. Steinhauser, and T.M. Klapötke, ““Green” pyrotechnics: a chemists challenge.” Angewandte Chemie International Edition, 47(18), 3330-3347,2008.
  • [16] U. R. Nair, S. N. Asthana, A. S. Rao, B. R. Gandhe, “Advances in high energy materials.”, Defence Science Journal, 60(2), 137.2010.
  • [17] L. Türker, and Variş, S., “A review of polycyclic aromatic energetic materials.”, Polycyclic Aromatic Compounds, 29(4), 228-266, 2009.
  • [18] A. V. Samet, V. N. Marshalkin, K. A. Lyssenko, V.V. Semenov, “Synthesis of substituted dibenz[b,f]oxepines from 2,4,6-trinitrotoluene.”, Russ Chem Bull 58, 347–350, 2009.
  • [19] C. W. An, F. S. Li, X. L. Song, Y. Wang, X. D. Guo, “Surface Coating of RDX with a Composite of TNT and an Energetic‐Polymer and its Safety Investigation.”, Propellants, Explosives, Pyrotechnics: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials, 34(5), 400-405, 2009.
  • [20] J. C. Oxley, J. L. Smith, J. Yue, J. Moran, J., “Hypergolic reactions of TNT.”, Propellants, Explosives, Pyrotechnics: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials, 34(5), 421-426, 2009.
  • [21] A. T. Burtsell, The Chemistry of Powder and Explosives. Volume II (Davis, Tenney L.). Journal of Chemical Education, 20(8), 414, 1943.
  • [22] M. A. Cook, The science of high explosives, Reinhold Publ. Corp., London, 1958
  • [23] C. J. An, Y. L. He, G. H. Huang, Y. H. Liu, “Performance of mesophilic anaerobic granules for removal of octahdro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX) from aqueous solution.”, Journal of hazardous materials, 179(1-3), 526-532, 2010.
  • [24] Y. Q. Wu, and F. L. Huang, “Frictional properties of single crystals HMX, RDX and PETN explosives.”, Journal of hazardous materials, 183(1-3), 324-333, 2010.
  • [25] Y. Bayat, M. Eghdamtalab, V. Zeynali, “Control of the particle size of submicron HMX explosive by spraying in non-solvent.”, Journal of Energetic Materials, 28(4), 273-284, 2010.
  • [26] H. Qiu, V. Stepanov, A. R. Di Stasio, T. Chou, W. Y. Lee, 2RDX-based nanocomposite microparticles for significantly reduced shock sensitivity. Journal of hazardous materials, 185(1), 489-493, 2011.
  • [27] A. S. Kumar, V.B. Rao, R. K. Sinha, A. S. Rao, “Evaluation of plastic bonded explosive (PBX) formulations based on RDX, aluminum, and HTPB for underwater applications.” Propellants, Explosives, Pyrotechnics, 35(4), 359-364, 2010.
  • [28] D. S. Viswanath, T. K. Ghosh, V. M. Boddu, 1, 3, 5-Triamino-2, 4, 6-Trinitrobenzene (TATB). Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties, 247-271, 2018.
  • [29] C. M. Tarver, “Corner turning and shock desensitization experiments plus numerical modeling of detonation waves in the triaminotrinitrobenzene based explosive LX-17.”, The Journal of Physical Chemistry A, 114(8), 2727-2736, 2010.
  • [30] J. Sun, B. Kang, C. Xue, Y. Liu, Y. Xia, X. Liu, W. Zhang, “Crystal state of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) undergoing thermal cycling process.”, Journal of Energetic Materials, 28(3), 189-201, 2010.
  • [31] D. M. Hoffman and A. T. Fontes, “Density distributions in TATB prepared by various methods”. Propellants, Explosives, Pyrotechnics: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials, 35(1), 15-23, 2010.
  • [32] C. Le Gallic, R. Belmas, P. Lambert, “Preheating Sensitization of a TATB composition. Part two: Microstructure evolution.”, Propellants, Explosives, Pyrotechnics: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials, 29(6), 339-343, 2004.
  • [33] J. Bottaro, Overviews of Recent Research on Energetic Materials. Adv. Ser. Phys. Chem, 16, 473, 2005.
  • [34] S. V. Sysolyatin, A. A. Lobanova, Y. T. Chernikova, G. V. Sakovich, Methods of synthesis and properties of hexanitrohexaazaisowurtzitane. Russian chemical reviews, 74(8), 757, 2005.
  • [35] P. E. Eaton, R. L. Gilardi, M. X. Zhang, “Polynitrocubanes: advanced high‐density, high‐energy materials.”, Advanced Materials, 12(15), 1143-1148, 2000.
  • [36] K. Karaghiosoff, T. M. Klapötke, A. Michailovski, G. Holl, “4, 10-Dinitro-2, 6, 8, 12-tetraoxa-4, 10-diazaisowurtzitane (TEX): a nitramine with an exceptionally high density.”, Acta Crystallographica Section C: Crystal Structure Communications, 58(9), o580-o581, 2002.
  • [37] S. Zeman, Z. Jalový, “Heats of fusion of polynitro derivatives of polyazaisowurtzitane.”, Thermochimica acta, 345(1), 31-38, 2000.
  • [38] H. Gao and J. N. M. Shreeve, “Azole-based energetic salts.”, Chemical reviews, 111(11), 7377-7436, 2011.
  • [39] J. A. Steevens, B. M. Duke, G. R. Lotufo, T. S. Bridges, “Toxicity of the explosives 2, 4, 6‐trinitrotoluene, hexahydro‐1, 3, 5‐trinitro‐1, 3, 5‐triazine, and octahydro‐1, 3, 5, 7‐tetranitro‐1, 3, 5, 7‐tetrazocine in sediments to Chironomus tentans and Hyalella azteca: Low‐dose hormesis and high‐dose mortality.”, Environmental Toxicology and Chemistry: An International Journal, 21(7), 1475-1482, 2002.
  • [40] G. Steinhauser, G. Giester,N. Leopold, C. Wagner, M. Villa, A. Musilek, “ Nitrogen‐Rich Compounds of the Lanthanoids: Highlights and Summary.”, Helvetica Chimica Acta, 93(2), 183-202, 2010.
  • [41] S.M. Danali, R. S. Palaiah, K. C. Raha, “Developments in Pyrotechnics.”, Defence Science Journal, 60(2), 2010.
  • [42] R. S. Damse, A. K. Sikder, “ Suitability of nitrogen rich compounds for gun propellant formulations.”, Journal of Hazardous materials, 166(2-3), 967-971, 2009.
  • [43] J. C. Gálvez-Ruiz, G. Holl, K. Karaghiosoff, T. M. Klapötke, K. Löhnwitz, P. Mayer, H. Nötch, K. Polborn, C. J. Rohbogner, M. Suter, J. J. Weigand, “Derivatives of 1, 5-diamino-1 H-tetrazole: a new family of energetic heterocyclic-based salts.”, Inorganic Chemistry, 44(12), 4237-4253, 2005.
  • [44] T. Brinck, Introduction to green energetic materials (pp. 1-13). John Wiley & Sons Ltd: Chichester, UK., 63-68, 2014.
  • [45] Y. Satoh and N.Marcopulos, “Application of 5-lithiotetrazoles in organic synthesis.”, Tetrahedron letters, 36(11), 1759-1762, 1995.
  • [46] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K.Howard, H. Puschmann, “OLEX2: A complete structure solution, refinement and analysis program.”, J. Appl. Crystallogr., 42(2), 339–341, 2009.
  • [47] G. M. Sheldrick, “Crystal structure refinement with SHELXL.”, Acta Crystallogr C Struct Chem, A71(1), 3–8, 2015.
  • [48] G. M. Sheldrick, “Crystal structure refinement with SHELXL.”, Acta Crystallogr C Struct Chem, C71, 3–8, 2015.
  • [49] Gaussian 09, Revision B.01. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L.Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida,T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E.Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. 148
  • [50] L.A. Curtiss, K. Raghavachari, P. C. Redfern and J.A. Pople, “Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation.”, J. Chem. Phys., 106, 1063-1079, 1997.
  • [51] E. F. C. Byrd and B. M. Rice, “Improved prediction of heats of formation of energetic materials using quantum mechanical calculations.”, J. Chem. Phys., A113, 5813-5813, 2009.
  • [52] B. M. Rice, S. V. Pai and J. Hare, “Predicting heats of formation of energetic materials quantum mechanical calculations.”, Combus. Flame, 118, 445-458, 1999.
  • [53] P. J. Linstrom and W. G. Mallard, “NIST Standard Reference Database Number 69.”, National Institute of Standards and Technology, Gaithersburg, MD, USA, 2005.
  • [54] Mercury CSD 4.1.0 (Build 235316), http://www.ccdc.cam.ac.uk/mercury/.
  • [55] M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, P.R. Spackman, D. Jayatilaka, M.A. Spackman, Crystal Explorer 17, University of Western Australia, 2017.
  • [56] Nist Chemistry Webbook. https://webbook.nist.gov/
  • [57] M. Suceska, M. Suceska, EXPLO5, Version 6.01; Brodarski Institute, Zagreb,Croatia, EXPLO5 (2013). Version 6.01.
  • [58] R.W. Shaw, T.B. Brill, D.L. Thompson, Overviews of recent research on energetic materials, World Scientific, 266-267, 2005.
  • [59] T.M. Klapötke, “Chemistry of high energy Materials”, Walter de gruyter, 4th Edition, 231-247, 2017.
  • [60] T.M. Klapötke, M.Stein, J. Stierstorfer, “Salts of 1-H-tetrazole-synthesis characterization and prroperties”, Z. Anorg. Allg. Chem., 634 , 1711-1723, 2008.
  • [61] G.R. Desiraju, “The C-H…..O Hydrogen Bond”, Acc.Chem. Res. ,29, 441-449, 1996.
  • [62] P. Atkins, J. De-Paula, “Atkin’s Physical Chemistry”, Oxford Uni. Press, 8th Edition, 2006.
Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi-Cover
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2006
  • Yayıncı: Süleyman Demirel Üniversitesi Fen-Edebiyat Fakültesi
Sayıdaki Diğer Makaleler

Oskar Balığının (Astronotus ocellatus) Solungaçlarında Glikokonjugatların Dağılımı

Mustafa ÖZTOP, Kenan ÇINAR, Emel DEMİRBAĞ

2-hidroksipropil-β-siklodekstrin ile Metronidazolün İnklüzyon Kompleksi Oluşumunun HPLC Yöntemi ile Belirlenmesi

İlkay KONÇE, Ebru ÇUBUK DEMİRALAY, Zehra ÜSTÜN

Ferromanyetik Manganez Selenyumun Elektronik Davranışı ve Mekaniksel Özellikleri Üzerine Teorik Bir Çalışma: AgMn2Se4

Aytaç ERKİŞİ, Gokhan SURUCU

Pedikül Vidası İçin Kütle Zayıflama Katsayılarının Teorik ve Monte Carlo Simülasyon Teknikleri ile Hesaplanması

Yiğit Ali ÜNCÜ, Onur KARAMAN, Hakan ÇAKIN, Hasan ÖZDOĞAN

Yeni Nesil Enerjik 1(3-klorofenil)-1H-tetrazol'ün Sentezi, Karakterizasyonu, Termokinetik Analizi ve Enerjik Performans Özellikleri

Nilgün ŞEN, Sinecan BOZKUŞ, Bayram YÜKSEL, Kübra GÜRPINAR, Yaprak GÜRSOY, Ertan ŞAHİN, Orhan ATAKOL

Osmaniye'de Yedi Yıllık Dönemde Yatay Yüzeydeki Global Güneş Radyasyonu Ölçümleri ve Yeni Ampirik Modeller Kullanılarak Global Güneş Radyasyonunun Tahmini

Muhittin ŞAHAN, Nuri EMRAHAOĞLU

Bazı Biyolojik Bileşiklerin Kütlesel Enerji Soğurma Katsayılarının Monte Carlo Yöntemiyle Hesaplanması

Aycan ŞENGÜL, Ahmet BOZKURT

PbTe Kuantum Noktalar ve Fotovoltaik Uygulamalarda Bant Enerji Hizalamasının Yapılması

Tuğba HACIEFENDİOĞLU, Demet ASİL

Borik Asidin Fibroblast Hücrelerinde Hücre Canlılığı/Sitotoksisite Etkinliğinin in vitro Olarak Değerlendirilmesi

Dilek DÜZGÜN ERGÜN, Ahu SOYOCAK

Monte Carlo Simülasyonu Kullanılarak B4C, B2O3, Sm2O3 ve Gd2O3 Katkılı Polimer Matrisli Kompozitlerin Termal ve Hızlı Nötron Zırhlama Özelliklerinin İncelenmesi

Yasin GAYLAN, Ahmet BOZKURT, Barış AVAR