Düşük Basınçta İndüktif Bağlı Radyo-Frekans Neon Akan Deşarjın Özellikleri

İndüktif olarak bağlı radyo-frekans (RF) deşarj odasında 0,17 mbar ile 1,4 mbar arasındaki basınçlarda bulunan neon (Ne) deşarjını karakterize etmek için optik emisyon spektrumları kullanılmıştır. 13,56 MHz frekansında 100, 160 ve 200 W çıkış güçlerinde çalışan RF güç kaynağı ile kuvars deşarj odasının iki farklı bölgesinde saf neon gazının akan deşarjı elde edilmiştir. Bu farklı iki bölgenin optik emisyon spektrumları 200-1200 nm dalga boyları aralığında elde edilmiştir. Amaç seçilen iki farklı bölge için ayrı ayrı plazma optik özellikleri belirlemektir. Neon akan deşarjı için elde edilen spektral çizgiler 585,248 ve 724,516 nm dalga boyları arasındadır. İndüktif bağlı deşarj sisteminde yaklaşık 0,77 mbar basınçta elde edilen deşarjın spektral çizgilerinin şiddetleri maksimum olarak ortaya çıkmıştır. Her iki deşarj bölgesi için uyarılma ve elektron sıcaklıkları matematiksel modeller ile tahmin edilmiştir.

The Properties of Inductive Coupled Radio-Frequency Neon Flowing Discharge at Low-Pressure

The optical emission spectra were used to characterize the neon (Ne) discharge in the inductive coupled radio-frequency (RF) discharge chamber at pressures between 0.17 mbar and 1.4 mbar. With the RF power source operating at 100, 160 and 200 W output power at 13.56 MHz frequency, flowing discharge of pure neon gas is obtained in two different regions of the quartz discharge chamber. The optical emission spectra of these two different regions were obtained in the wavelength range of 200-1200 nm. The aim is to determine the optical properties of plasma for two different regions selected separately. The spectral lines obtained for the neon flowing discharge are between the wavelengths of 585.248 and 724.516 nm. In the inductive coupled discharge system, the intensities of the spectral lines of discharge obtained at a pressure of approximately 0.77 mbar were maximum. It was attempted to estimate the excitation and electron temperatures for both discharge regions by mathematical models. 

___

  • [1] W. Baumjohann, and R. A. Treumann, Basic Space Plasma Physics. London: Imperial College Press, 1997.
  • [2] L. Tonks, and I. Langmuir, “Oscillations in ionized gases,” Phys. Rev., 33 (2), 195, 1929.
  • [3] J. Schulze, B. G. Heil, D. Luggenhölscher, and U. Czarnetzki, “Electron beams in capacitively coupled radio-frequency discharges,” IEEE Trans. Plasma Sci., 36 (4), 1400-1401, 2008.
  • [4] X. Zhang, P. C. Yu, Y. Liu, Z. Zheng, L. Xu, P. Wang, and J. X. Cao, “The transition mechanisms of the E to H mode and the H to E mode in an inductively coupled argon-mercury mixture discharge,” Phys. Plasmas, 22 (10), 103509, 2015.
  • [5] T. Kaneda, T. Kubota, M. Ohuchi, and J. S. Chang, “Time-averaged electric potential profiles in a capacitive-coupling parallel-plate electrode neon gas RF discharge plasma,” J. Phys. D: Appl. Phys., 23 (12), 1642-1647, 1990.
  • [6] A. Friedman, Plasma Chemistry. Cambridge: Cambridge University Press, 2008.
  • [7] I. Tanarro, V.J. Herrero, E. Carrasco, and M. Jiménez-Redondo, “Cold plasma chemistry and diagnostics,” Vacuum, 85 (12), 1120-1124, 2011.
  • [8] R. B. Heimann, Plasma- Spray Coating Principles and Applications. The Federal Republic of Germany: VCH, 1996.
  • [9] N. Zhang, F. Sun, L. Zhu, M. P. Planche, H. Liao, C. Dong, and C. Coddet, “Electron temperature and density of the plasma measured by optical emission spectroscopy in VLPPS conditions,” J. Therm. Spray Tech., 20 (6), 1321-1327, 2011.
  • [10] F. J. Gordillo-Vazquez, M. Camero, and C. Go ́mez-Aleixandre, “Spectroscopic measurements of the electron temperature in low pressure radiofrequency Ar/H2/C2H2 and Ar/H2/CH4 plasmas used for the synthesis of nanocarbon structures,” Plasma Sources Sci. Technol., 15 (1), 42-51, 2006.
  • [11] A. Bogaerts, E. Neyts, R. Gijbels, and J. van der Mullen, “Gas discharge plasmas and their applications,” Spectrochim. Acta Part B, 57, 609–658, 2002.
  • [12] V. A. Godyak, R. B. Piejak, and B. M. Alexandrovich, “Electron energy distribution function measurements and plasma parameters in inductively coupled argon plasma,” Plasma Sources Sci. Technol., 11, 525-543, 2002.
  • [13] J. Hopwood, “Review of inductively coupled plasmas for plasma processing,” Plasma Sources Sci. Technol., 1 (2), 109, 1992.
  • [14] A. Montaser, S. K. Chan, and D. W. Koppenaal, “Inductively coupled helium plasma as an ion source for mass spectrometry,” Analytical Chemistry, 59 (8), 1240-1242, 1987.
  • [15] M. Tanışlı, İ. Rafatov, N. Şahin, S. Mertadam, and S. Demir, “Spectroscopic study and numerical simulation of low-pressure radio-frequency capacitive discharge with argon downstream,” Can. J. Phys., 95 (2), 190-200, 2017.
  • [16] M. Tanışlı, and N. Şahin, “Optical characteristics for capacitively and inductively radio frequency discharge and post discharge of helium,” Phys. Plasmas, 23 (1), 13513, 2016.
  • [17] A. Piel, Plasma Physics: An Introduction to Laboratory, Space, and Fusion Plasma. New York: Springer, 2010.
  • [18] M. V. Isupov, and I. M. Ulanov, “Analysis of the parameters of plasma of an inductively coupled discharge in neon,” High Temperature, 43 (2), 169–176, 2005.
  • [19] M. V. Isupov, I. M. Ulanov, and A. Yu. Litvintsev, “Experimental investigation of the electrical and optical characteristics of an inductively coupled discharge in neon,” High Temperature, 42 (5), 682–688, 2004.
  • [20] Z. I. Khattak, M. Shafiq, and A. W. Khan, “Investigation of plasma parameters during mode transition in magnetic-pole-enhanced-inductively coupled neon plasma,” IEEE Trans. Plasma Sci. 47 (5), 2665-2674, 2019.
  • [21] C. A. DeJoseph Jr, V. I. Demidov, J. Blessington, and M. E. Koepke, “Investigation of a radio-frequency inductive-coupled-plasma discharge afterglow in noble gases,” J. Phys. B: At. Mol. Opt. Phys., 40 (19), 3823–3833, 2007.
  • [22] H. R. Griem, Principles of Plasma Spectroscopy. Cambridge: Cambridge University Press, 1997.
  • [23] N. U. Rehman, M.A. Khan, M. Y. Naz, M. Shafiq, and M. Zakaullah, “Characterization of 13.56 MHz RF Ne–N2 mixture plasma using intrusive and non-intrusive diagnostic techniques,” Phys. Scr., 88, 045503, 2013.
  • [24] A. Grill, Cold Plasma in Materials Fabrication from Fundamentals to Applications. New York: IEE Press, 1993.
  • [25] X. M. Zhu, and Y. K. Pu, “Using OES to determine electron temperature and density in low-pressure nitrogen and argon plasmas,” Plasma Sources Sci. Technol., 17 (2), 024002, 2008.
  • [26] M. Tanışlı, N. Şahin, and S. Demir, “Comments on the Langmuir probe measurements of radio-frequency capacitive argon–hydrogen mixture discharge at low pressure,” Can. J. Phys., 96 (5), 494-500 (2018).
  • [27] M. Tanışlı, N. Şahin, M. Younus, N. U. Rehman, and S. Demir, “Optical and electrical properties of capacitive coupled radio frequency Ar-H2 mixture discharge at the low pressure,” Phys. Plasmas, 24 (10), 102123 (2017).
  • [28] M. Tanışlı, N. Şahin, and S. Demir, “An investigation on optical properties of capacitive coupled radio-frequency mixture plasma with Langmuir probe,” Optik, 142, 153-162 (2017).
  • [29] V. N. Ochkin, Spectroscopy of Low Temperature Plasma. Weinheim, New York, Basel, Cambridge, Tokyo: VCH, 2009.
  • [30] C. B. Boss, and K. J. Fredeen, Concepts, Instrumentation and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry. U.S.A.: The Perkin-Elmer Corporation, 1997.
  • [31] C. Lao, J. Cotrino, A. Palmero, A. Gamero, and A. R. Gonz ́alez-Elipe, “Electron temperature measurement in a surface-wave-produced argon plasma at intermediate pressures,” Eur. Phys. J. D, 14 (3), 361–366, 2001.
  • [32] Nist: http://physics.nist.gov/cgi-bin/ASD/lines1.pl (Erişim Tarihi: 04.06.2015)
  • [33] Y. H. Jung, and K. S. Chung, “Measurement of the non-thermal properties in a low-pressure spraying plasma,” J. Korean Phys. Soc., 40 (5), 856-860, 2002.
  • [34] N. Tian-Ye, C. Jin-Xiang, L. Lei, L. Jin-Ying, W. Yan, W. Liang, and L. You, “A comparison among optical emission spectroscopic methods of determining electron temperature in low pressure argon plasmas,” Chin. Phys., 16 (9), 2757-2763, 2007.
  • [35] F. U. Khan, N. U. Rehman, S. Naseer, M. A. Naveed, A. Qayyum, N. A. D. Khattak, and M. Zakaullah, “Diagnostic of 13.56 MHz RF sustained Ar–N2 plasma by optical emission spectroscopy,” Eur. Phys. J. Appl. Phys., 45, 11002, 2009.
  • [36] D. Karabourniotis, E. Drakakis, and B. Zacharopoulos, “Electron and population temperatures in a non-LTE optically thick plasma” J. Phys. D: Appl. Phys., 25 (2), 188, 1992.
  • [37] G. Herzberg, Atomic Spectra and Atomic Structure. New York: Dover, 1944.
  • [38] T. Fujimoto, “Kinetics of ionization-recombination of a plasma and population density of excited ions. I. equilibrium plasma,” J. Phys. Soc. Jpn., 47(1), 265-272, 1979.
  • [39] T. Fujimoto, “Kinetics of ionization-recombination of a plasma and population density of excited ions. IV. Recombining plasma–low-temperature case,” J. Phys. Soc. Jpn., 49 (4), 1569-1576, 1980.
  • [40] G. V. Marr, Plasma Spectroscopy. London: Elsevier Publishing Company, 1968.
  • [41] https://fusedweb.llnl.gov/CPEP/Chart_Pages/5.Plasma4StateMatter.html (Erişim Tarihi: 24.07.2019)
  • [42] M. A. Lieberman, and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing. USA: John Wiley and Sons, 2005.
  • [43] G. Waidmann, “Acoustic perturbations in a pulsed RF-plasma,” Z. Physik, 233 (4), 351-357, 1970.
  • [44] S. Iordanova, and I. Koleva, “Optical emission spectroscopy diagnostics of inductively-driven plasmas in argon gas at low pressures,” Spectrochim. Acta, Part B, 62 (4), 344-356, 2007.
  • [45] D. O’Connell, T. Gans, D. L. Crintea, U. Czarnetzki, and N. Sadeghi, “Plasma dynamics in an inductively coupled magnetic neutral loop discharge,” Plasma Sources Sci. Technol.,17, 024022, 2008.
Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi-Cover
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2006
  • Yayıncı: Süleyman Demirel Üniversitesi Fen-Edebiyat Fakültesi
Sayıdaki Diğer Makaleler

4-Aminoantipirin İçeren Yeni Bir Schiff Baz Üzerine Sentetik, Spektroskopik, Teorik ve Biyolojik Açıdan Bir İnceleme

Aliye GEDİZ ERTÜRK

Sawada-Kotera Denkleminin Nümerik Yöntemlerle Çözümü ve Çözümlerin Karşılaştırılması

Zekeriya ÖZKAN, Ramazan UYHAN

Voltaj ve Akım Değerlerinin Hasta Dozu Üzerindeki Etkilerinin CTDI Fantomu ile Araştırılması

İsmail Hakkı SARPÜN, Aysun İNAL, Buket ÇEÇEN

[Ni(2-Benzimidazol-il-üre)2(etanol)2][NO3]2 Bileşiğinin Yoğunluk Fonksiyoneli Teorisi Kullanılarak Yapılan Bazı Kuantum Kimyasal Hesaplamaları

Zeynep TURHAN İRAK, Mehmet POYRAZ

İn Vitro Çinko Uygulamasının DNA Hasarı, Lipid Peroksidasyonu ve Eritrosit Stabilitesi Üzerine Etkileri

Tuğba DEMİRAL, Muhammet Yusuf TEPEBAŞI, Furkan CALAPOĞLU, Ayşe BÜLBÜL, Mustafa CALAPOĞLU

Asimetrik Hetero Diels-Alder Reaksiyonu için Organaokatalizör Olarak Kiral 1,4-Hidroksiarilalkoller (HAROL) ve 1,4-Aminoalkilfenoller (AAP)

Erkan ERTÜRK, Mustafa Ali TEZEREN, Tahir TİLKİ

Nar (Punica granatum L.) Çeşitlerinin SSR Markörleri ile Moleküler Karakterizasyonu

Halime Keriman ÇETİNKAYA, Damla GÜVERCİN, Yaşar KARAKURT

Lineer Hızlandırıcı Cihazında (Linak) Alınan Rölatif Doz Ölçümlerinde ≤ 3 mm Geometrik Hataların Yüzde Derin Doz (%DD) ve Işın Profil (IP) Parametreleri Üzerine Etkisi

Aysun İNAL

Dışsal Glisin Uygulamasıyla Allium cepa L.'da Tuz Teşvikli Stresin Hafifletilmesi

Dilek ÇAVUŞOĞLU

Diffüz Optik Tomografi için Yeniden Yapılanma Algoritmalarının Karşılaştırılması

Tanju MERCAN, Gençay SEVİM, Yiğit Ali ÜNCÜ, Serkan USLU, Hüseyin Özgür KAZANCI, Murat CANPOLAT