2,4-Dihidroksikinolinden Türetilen Bazı Disazo Boyalar ile Antikanser ve DNA Bağlanma Özellikleri Arasındaki İlişkinin Yoğunluk Fonksiyonel Teorisi ile Analizi

2,4-dihidroksi kinolin türevi diazo boyalarının bazı fiziksel ve kimyasal özellikleri teorik yöntemlerle incelenmiştir. Bileşiklerin solvatokromik davranışını ve absorpsiyonunu belirlemek için altı farklı çözücü kullanılmış ve deneysel veriler kuantum kimyasal hesaplamalardan elde edilen teorik verilerle karşılaştırılmıştır. Bileşiklerin geometrik, elektronik ve bazı kimyasal reaktivite parametrelerini elde etmek için DFT hesaplamaları yapılmıştır. Bileşiklerin elektronik özellikleri ile DNA bağlanma, HeLa ve PC3 kanser hücre hatlarına karşı sitotoksisite kapasitesi arasındaki ilişkiyi belirlemek için molekül içindeki atom, doğal bağ yörüngesi, durum yoğunluğu, kovalent olmayan etkileşim, Fukui fonksiyonu, elektron lokalizasyon fonksiyonu ve elektron delokalizasyon aralığı analizleri yapılmıştır. –Cl ve –NO2 sübstitüentlerine sahip bileşiklerin daha yüksek DNA bağlanmasına ve daha yüksek antikanser etkisine sahip olduğu görülmüştür. Sübstitüentlerin pozisyonlarının yanı sıra bağlardaki elektron yoğunluğu, delokalizasyon indexi değerleri ve nükleofilik ve elektrofilik saldırı bölgelerinin dağılımının bileşiklerin raktivitelerini belirleyen önemli faktörler arasında olduğu görülmüştür. Ayrıca, daha iyi DNA bağlanma özelliği gösteren bileşiklerin HOMO enerjilerinin durum yoğunlukları diğer bileşiklere göre daha yüksek hesaplanmıştır.

Analysis of Relationship Between Some Disazo Dyes Derived from 2,4-Dihydroxyquinoline and Its Anticancer and DNA Binding Properties by Density Functional Theory

It was studied some physical and chemical properties of 2,4-dihydroxy quinoline derivative diazo dyes by theoretical methods. Six different solvents were used to determine the solvatochromic behavior and absorption of the compounds, and the experimental results were compared with the theoretical data obtained from quantum chemical calculations. DFT calculations were carried out to obtain the geometric, electronic and some chemical reactivity parameters of the compounds. The atom in molecule, natural bond orbital, density of state, non-covalent interaction, Fukui function, electron localization function, and electron delocalization range analyzes of the compounds were performed to determine the relationship between the electronic properties and the DNA binding capacity and the cytotoxicity against HeLa and PC3 cancer cell lines. It was observed that the compounds substituted with –Cl and –NO2 had higher DNA binding and higher anticancer effect. Besides the positions of the substituents, the electron density in the bonds, the delocalization index values and the distribution of the nucleophilic and electrophilic attack sites are among the important factors determining the reactivity of the compounds. In addition, the HOMO energies of the compounds with better DNA binding properties were calculated higher than the other compounds.

___

  • [1] K. Venkataraman, The chemistry of synthetic dyes (Vol. 4), 2012, Elsevier.
  • [2] H. S. Freeman, A. T. Peters, Colorants for non-textile applications. 2000, Elsevier.
  • [3] Brown, J. “The chemistry of synthetic dyes used in cosmetics”, J Soc Cosmet Chem, 18, 225-244, 1967.
  • [4] M. Kucharska, J. Grabka, “A review of chromatographic methods for determination of synthetic food dyes”, Pubmed, Talanta, 80(3), 1045-1051, 2010. [5] E. Gurr, Synthetic dyes in biology, medicine and chemistry, 2012, Elsevier.
  • [6] K.A. Naresh, R.C. Nagendranatha, P.R. Hari, M.S. Venkata, “Azo dye load-shock on relative behavior of biofilm and suspended growth configured periodic discontinuous batch mode operations: critical evaluation with enzymatic and bio-electrocatalytic analysis” Water Res. 60 (1), 182–196, 2014.
  • [7] Mark. Wainwright, "Dyes in the development of drugs and pharmaceuticals" Dyes and Pigments, 76.3: 582-589, 2008.
  • [8] S. Rodriguez-Couto, "Enzymatic biotransformation of synthetic dyes" Current drug metabolism 10.9: 1048-1054, 2009.
  • [9] F. Rafii, J. D. Hall, C. E. Cerniglia, "Mutagenicity of azo dyes used in foods, drugs and cosmetics before and after reduction by Clostridium species from the human intestinal tract." Food and chemical Toxicology 35.9: 897-901, 1997.
  • [10] S. Erişkin, N. Şener, S. Yavuz, İ. Şener, “Synthesis, characterization, and biological activities of 4-imino-3-arylazo-4H-pyrimido [2, 1-b][1, 3] benzothiazole-2-oles”, Med Chem Res, 23(8):3733–43,2014.
  • [11] N. Şener, İ. Şener, S. Yavuz, F. Karci,” Synthesis, Absorption Properties and Biological Evaluation of Some Novel Disazo Dyes Derived from Pyrazole Derivatives”, Asian J Chem, 27(8):3003–12, 2015.
  • [12] N. M. Mallikarjuna, J. Keshavayya, "Synthesis, spectroscopic characterization and pharmacological studies on novel sulfamethaxazole based azo dyes", Journal of King Saud University-Science, 32(1), 2018.
  • [13] M. A. Weaver, L. Shuttleworth, “Heterocyclic diazo component”, Dyes and Pigments, 3 (2,3), 81-121, 1982.
  • [14] K. Singh, S. Singh, J.A. Taylor, “Monoazo disperse dyes-part 1: synthesis, spectroscopic studies and technical evaluation of monoazo disperse dyes derived from 2-aminothiazoles”, Dyes and Pigments, 54, 189-200, 2002.
  • [15] K. Singh, S. Singh, A. Mahajan, A. Taylor, “Monoazo disperse dyes. Part 3: synthesis and fastness properties of some novel 4,5-disubstituted thiazolyl-2-azo disperse dyes”, Coloration Technology, 119 (4), 198-204, 2003.
  • [16] S. Shibata, H. A. Flaschka, A. J. Barnard, Chelates in Analytical Chemistry, Vol. 4, Marcet Dekker, 1972, New York, 1st edn.
  • [17] G. Hallas, J Soc Dyer Colorists,95:285, 1979.
  • [18] D. W. Rangnekar, M. B. Chaudkari, Dyes Pigments,; 10:173, 1989.
  • [19] T. G. Deligeorgiev, “An Improved method for the preparation of 2-aryl-, 2-hetaryl- and 2-styrylbenzothiazoles”, Dyes Pigments, Volume 12, Issue 4, , Pages 243-248, 1990.
  • [20] A. Penchev, D. Simov, N. Gadjev, “Diazotization of 2-amino-6- methoxybenzothiazole at elevated temperature”, Dyes and Pigments, 16:77-81,1991.
  • [21] Peters AT, Gbadamosi NMA. Dyes Pigments 1992;18:115.
  • [22] N. M. Mallikarjuna, et al. "Synthesis, characterization, thermal and biological evaluation of Cu (II), Co (II) and Ni (II) complexes of azo dye ligand containing sulfamethaxazole moiety." Journal of Molecular Structure, 1165: 28-36, 2018.
  • [23] İ. Şener, N. Şener, M. Gür. "Synthesis, structural analysis, and absorption properties of disperse benzothiazol-derivative mono-azo dyes", Journal of Molecular Structure, Volume 1174, Pages 12-17, 2018.
  • [24] N. M. Mallikarjuna, J. Keshavayya, "Synthesis, spectroscopic characterization and pharmacological studies on novel sulfamethaxazole based azo dyes", Journal of King Saud University – Science 32, 251–259, 2020.
  • [25] F. Karcı, N. Şener, M. Yamaç, İ. Şener, A. Demirçalı, “The synthesis, antimicrobial activity and absorption characteristics of some novel heterocyclic disazo dyes”, Dyes and Pigments, 80(1), 47-52, 2009.
  • [26] N. Şener, S. Erişkin, S. Yavuz, İ. Şener, “Synthesis, Characterization, Solvatochromic Properties, and Antimicrobial‐radical Scavenging Activities of New Diazo Dyes Derived from Pyrazolo [1, 5‐a] pyrimidine”, Journal of Heterocyclic Chemistry, 54(6), 3538-3548, 2017.
  • [27] S. M. Riyadh, A. A. Deawaly, H. E. Ahmed, T. H. Afifi, S. Ihmaid, “Novel arylazothiazoles and arylazo [1, 3, 4] thiadiazoles as potential antimicrobial and anticancer agents: synthesis, molecular modeling, and biological screening”, Medicinal Chemistry Research, 26(9), 1956-1968, 2017.
  • [28] F. Öztürk, L. Açik, İ. Şener, F. Karci, E. Kiliç, “Antimicrobial properties and DNA interactions studies of 3-hetarylazoquinoline-2, 4-diol compounds”, Turk J Chem, 36(2):293–302, 2012.
  • [29] N. Şener, H. J. A. Mohammed, S. Yerlikaya, Y. C. Altunoglu, M. Gür, M. C. Baloglu, İ. Şener, “Anticancer, antimicrobial, and DNA protection analysis of novel 2, 4-dihydroxyquinoline dyes”, Dyes and Pigments, 157, 11-19, 2018.
  • [30] M. D. Engelmann, R. Hutcheson, I. F. Cheng, “Stability of Ferric Complexes with 3-Hydroxyflavone (Flavonol), 5, 7-Dihydroxyflavone (Chrysin), and 3 ‘, 4 ‘-Dihydroxyflavone”, J Agric Food Chem, 53(8):2953–60, 2005.
  • [31] T. Thirunavukkarasu, H. A. Sparkes, K. Natarajan, "Quinoline based Pd (II) complexes: Synthesis, characterization and evaluation of DNA/protein binding, molecular docking and in vitro anticancer activity" Inorganica Chimica Acta, Volume 482, Pages 229-239, 2018.
  • [32] PV Sri Ramya, et al. "Curcumin inspired 2-chloro/phenoxy quinoline analogues: Synthesis and biological evaluation as potential anticancer agents." Bioorganic & medicinal chemistry letters, 28.5, 892-898, 2018.
  • [33] X. Tian, et al. "Preparation of anticancer micro-medicine based on quinoline and chitosan with pH responsive release performance", Colloids and Surfaces B: Biointerfaces, 165: 278-285, 2018.
  • [34] S. Kwon, et al. "Mitochondria-targeting indolizino [3, 2-c] quinolines as novel class of photosensitizers for photodynamic anticancer activity", European journal of medicinal chemistry, 148: 116-127, 2018.
  • [35] K. D. Upadhyay, et al. "Synthesis and Biological Screening of Pyrano [3, 2-c] quinoline Analogues as Anti-inflammatory and Anticancer Agents." ACS medicinal chemistry letters, 9.3: 283-288, 2018.
  • [36] Y. Ma, F. Wang, S. Kambam, X. Chen, “A quinoline-based fluorescent chemosensor for distinguishing cadmium from zinc ions using cysteine as an auxiliary reagent”, Sensor Actuator B Chem, 188:1116–22, 2013.
  • [37] E. M. Nolan, J. Jaworski, K-I Okamoto, Y. Hayashi, M. Sheng, S. J.Lippard, “QZ1 and QZ2: rapid, reversible quinoline-derivatized fluoresceins for sensing biological Zn (II)”. J Am Chem Soc,127:16812–23, 2005.
  • [38] Z. Dong, Y. Guo, X. Tian, J. Ma, “Quinoline group based fluorescent sensor for detecting zinc ions in aqueous media and its logic gate behaviour”, J Lumin, 134:635–9, 2013.
  • [39] S. Kobayashi, S. Nagayama, “A new methodology for combinatorial synthesis. Preparation of diverse quinoline derivatives using a novel polymer-supported scandium catalyst”, Journal of the American Chemical Society, 118(37), 8977-8978, 1996.
  • [40] J. P. Michael, “Quinoline, quinazoline and acridone alkaloids. Natural product reports”, 24(1), 223-246, 2007.
  • [41] C. Dattatray, B. Priyabrata, at al., “n-alkylamino analogs of Vitamin K3: Electrochemical, DFT and anticancer activity of their oxidized and one electron reduced form”, Journal of Molecular Structure, 1179 443-452, 2019.
  • [42] H. Iftikar, N. K. Gour, C. D. Ramesh, “Kinetics and thermochemistry of hydrolysis mechanism of a novelanticancer agent trans-[PtCl2(dimethylamine) (isopropylamine)]:A DFT study”, Chemical Physics Letters, 651: 216–220, 2016.
  • [43] J. J. M. Medina, at al., “Synthesis, characterization, theoretical studies and biological (antioxidant, anticancer, toxicity and neuroprotective) determinations of a copper(II) complex with 5-hydroxytryptophan”, Biomedicine & Pharmacotherapy, 111: 414–426, 2019.
  • [44] W. M. Al-Asbahy, at al., “A dinuclear copper(II) complex with piperazine bridge ligand as a potential anticancer agent: DFT computation and biological evaluation”, Inorganica Chimica Acta, 445: 167–178, 2016.
  • [45] N. T. Rahmouni, at al., “New mixed amino acids complexes of iron(III) and zinc(II) with isonitrosoacetophenone: Synthesis, spectral characterization, DFT study and anticancer activity”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 213: 235–248, 2019.
  • [46] A. Spinello, A. Terenzi, G. Barone, “Metal complex–DNA binding: Insights from molecular dynamics and DFT/MM calculations”, Journal of Inorganic Biochemistry. 124: 63–69, 2013.
  • [47] S. Baskaran, at al., “DFT analysis and DNA binding, cleavage of copper(II) complexes”, Journal of Molecular Liquids, 221: 1045–1053, 2016.
  • [48] B. Jadoo, at al., “Novel coumarin rhenium(I) and -(V) complexes: Formation, DFT and DNA binding studies”, Polyhedron, 144: 107–118, 2018.
  • [49] S. I. Farooqi, at al., “Synthesis, theoretical, spectroscopic and electrochemical DNA binding investigations of 1, 3, 4-thiadiazole derivatives of ibuprofen and ciprofloxacin: Cancer cell line studies”, Journal of Photochemistry & Photobiology, B: Biology 189: 104–118, 2018.
  • [50] O. D. Okagu, at al., “Synthesis and characterization of Cu(II), Co(II) and Ni(II) complexes of a benzohydrazone derivative: Spectroscopic, DFT, antipathogenic and DNA binding studies”, Journal of Molecular Structure, 1183: 107-117, 2019.
  • [51] Gaussian 09, Revision B.01, Gaussian Inc., Wallingford CT, 2010.
  • [52] P. Hohenberg, W. Kohn, “Inhomogeneous Electron Gas”, Phys. Rev., 136, B864, 1964.
  • [53] W. Kohn, L. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects”, Phys. Rev., 140, A1133, 1965.
  • [54] A. D Becke, “A new mixing of Hartree–Fock and local density‐functional theories”, J Chem Phys. 98, 1372, 1993.
  • [55] C. Lee, W. Yang, R.G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density”, Phys Rev B, 37, 785, 1988.
  • [56] R. W. F. Bader, Atoms in Molecules. A Quantum Theory, Oxford: Calendon Press, 1990.
  • [57] R. F. W. Bader, ”Atoms in molecules”, Acc. Chem. Res. 18, 9, 1985.
  • [58] R. F. W. Bader,” A quantum theory of molecular structure and its applications” Chem. Rev., 91, 893, 1991.
  • [59] C. Reichart, T. Welton, Solvent and Solvent Effect in Organic Chemistry, Weinheim: Wiley-VCH Verlagand Co. KgaA, 2011, 4th Edn.
  • [60] Harikrishnan, U.; Menon, S. K., “Crown Ether Bis-diazo Dyes for Aqueous Inkjet Inks by Micro Emulsion Technique”, Dyes Pigm., 77, 462, 2008.
  • [61] B. Valeur, “Molecular Fluorescence: Principles and Applications”, 2012, Wiley-VCH: 357 Weinheim, Germany.
Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi-Cover
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2006
  • Yayıncı: Süleyman Demirel Üniversitesi Fen-Edebiyat Fakültesi