Farklı Soğutma Kanallarına Bir Kokil Kalıp Çekirdeğinin Termal Davranışlarının Nümerik Olarak İncelenmesi

Bu çalışmada, farklı soğutma kanallarına sahip bir kokil kalıp çekirdeği nümerik olarak incelenmiştir. Klasik soğutma kanallı kalıp çekirdeği, kanatlı soğutma kanallı kalıp çekirdeği ve dalgalı soğutma kanallı kalıp çekirdeğinin 3D-CAD çizimleri yapılmıştır. Elde edilen tasarımların termal davranışları Fluent yazılımı kullanılarak analiz edilmiştir. Soğutma performanslarının karşılaştırılması amacıyla, klasik, kanatlı ve dalgalı soğutma kanallı kalıp çekirdeklerinin termal davranışları nümerik olarak incelenmiştir. Erimiş metalin (Al6061 alüminyum alaşımı) kalıba dökülmesinden itibaren kalıp iç yüzeyinden 0-5. s zaman aralığında ve 0.5 s zaman adımlarıyla alınan verilerle kalıp çekirdeklerinden elde edilen ürünün (supap) sıcaklık dağılımı, katılaşma oranları karşılaştırmalı olarak irdelenmiştir. Soğutma performans sonuçlarının karşılaştırılmasından, supap sap kısmında kanatlı soğutma kanallı kalıp çekirdeğinin, supap baş kısmında dalgalı soğutma kanallı kalıp çekirdeğinin soğutma performansının daha iyi olduğu gözlemlenmiştir.

Numerical Investigation of Thermal Behavior of a Permanent Mold Core to Different Cooling Channels

In this study, a permanent mold core with different cooling channels is analyzed numerically. 3D-CAD drawings of classical cooling channel mold core, winged cooling channel mold core and curved cooling channel mold core were made. The thermal behaviors of the designs obtained were analyzed using Fluent software. In order to compare the cooling performances, the thermal behaviors of classical, winged and curved cooling channel mold cores were analyzed numerically. After the molten metal (Al6061 aluminum alloy) was poured into the mold, the temperature distribution and solidification rates of the product (valve) obtained from the mold cores were analyzed in comparison with the data obtained from the inner surface of the mold in a time interval of 0-5. s and with 0.5 s time steps. Comparing the cooling performance results, it has been observed that the cooling performance of the mold core with winged cooling channels in the valve stem part and the mold core with curved cooling channels at the valve head part are better.

___

  • [1] Amend, P.,Pscherer, C., Rechtenwald, T., Frick, T. ve Schmidt, M. 2010. A fast and flexible method for manufacturing 3D molded interconnect devices by the use of a rapid prototyping technology. Physics Procedia, 5, 561–572.
  • [2] Deckers J., Meyers S., Kruth J.P., Vleugels J. 2014. Direct selective laser sintering/melting of high density alumina powder layers at elevated temperatures. Physics Procedia, 56, 117 – 124.
  • [3] Zeng, K., Pal, D.i Stucker, B. 2012. A Review of Thermal Analysis Methods in Laser Sintering and Selective Laser Melting. Utwired. http://utwired. engr.utexas.edu/lff/symposium/proceedingsArchive/pubs/Manuscripts/2012/2012-60 Zeng.pdf. (Erişim Tarihi: 02.01.2019).
  • [4] Thomas, D., 2009. The Development of Design Rules for Selective Laser Melting. Cardiff Metropolitan University. https://repository. cardiffmet.ac.uk/dspace/handle/10369/913. (Erişim Tarihi: 27.02.2019).
  • [5] Atzeni E. and Salmi A. 2015. Study on unsupported overhangs of AlSi10Mg parts processed by Direct Metal Laser Sintering. Journal of Manufacturing Processes, 20(3), 500-506.
  • [6] Hanzl P.,Zetek M., Baksa T., Kroupa T. 2015. The Influence of Processing Parameters on the Mechanical Properties of SLM Parts. Procedia Engineering, 100, 1405 – 1413.
  • [7] Thompson, S.M.,Aspin, Z.S., Shamsaei, N., Elwany, A. ve Bian, L. 2015. Additive manufacturing of heat exchangers: Acasestudy on a multi-layered Ti–6Al–4V oscillatingheatpipe. Additive Manufacturing, 8, 163-174.
  • [8] Ahammed, N., Asirvatham, L.G. ve Wongwises, S. 2016. Thermoelectric cooling of electronic devices with nano fluid in a multiport mini channel heat exchanger. Experimental Thermal and Fluid Science, 74, 81-90.
  • [9] Al-Asadi, M.,Alkasmoul, F.S., Wilson, M.C.T. 2016. Heat transfer enhancement in a micro-channel cooling system using cylindrical vortex generators. International Communication in Heat and Mass Transfer, 74, 40-47.
  • [10] Au K.M., Yu K.M., Chiu W.K. 2011. Visibility based conformal cooling channel generation for rapid tooling. Computer-Aided Design, 43, 356-373.
  • [11] Hölker, R., Haase, M., Khalifa, N.B., Takkaya, A.E. 2015. Hot extrusion dies with conformal cooling channels produced by additive manufacturing. Aluminum Two Thousand World Congress and International Conference on Extrusion and Benchmark, ICEB 2015, 4838-4846.
  • [12] Sachs, E., Wylonis, E., Allen, S., Cima,M., Guo, H., 2000. Production of Injection Molding Tooling With Conformal Cooling Channels Using the Three Dimensional Printing Process. Polimer Engineering and Science, 40, 5.
  • [13] Wang, Y., Yu, K.M., Wang, C.C.L. 2015. Spiral and conformal cooling in plastic injection molding. Computer-Aided Design, 63, 1-11.
  • [14] Xia, C., Fu, F., Lai, J., Yao, X., Chen, Z. 2015. Conjugate heat transfer in fractal tree-like channels network heat sink for high-speed motorized spindle cooling. Applied Thermal Engineering, 90, 1032-1042.
  • [15] Hu, P., He, B., Ying, L. 2016. Numerical investigation on cooling performance of hot stamping tool with various channel designs. Applied Thermal Engineering, 96, 338-351.
  • [16] Eimsa-ard. K, Wannisorn. K. 2015. Conformal bubbler cooling for molds by metal deposition process. Computer-Aided Design, 69, 126-133.
  • [17] Du F.,Wang X.,Liu Y.,Li T., Yao M. 2016. Analysis of Non-uniform Mechanical Behavior for a Continuous Casting Mold Based on Heat Flux from Inverse Problem. Journal of Iron and Steel Research, 23(2), 83-91.
  • [18] Koller, M., Walter, H., Hameter, M., 2016. Transient Numerical Simulation of the Melting and Solidification Behavior of NaNO3 Using a Wire Matrix for Enhancing of the Heat Transfer. Energies, 9, 205.
  • [19] Fang, W., He, X., Zhang, R., Yang, S., Qu, X. 2015. Evolution of stresses in metal injection molding parts during sintering. Transaction of Nonferrus Metals Society of China, 25, 552-558.
  • [20] Jimenes, C.A.R., Guerrero, A.H., Cervantes, J.G., Gutierrez, D.L., Valle, C.U.G. 2016. CFD study of constructal microchannel networks for liquid-cooling of electronic devices. Applied Thermal Engineering, 95, 374-381.
  • [21] Silverio, V., Cardoso, S., Gaspar, J., Freitas, P.P., Moreira, A.L.N. 2015. Design, fabrication and test of an integrated multi-microchannel heatsink for electronics cooling. Sensors and Actuators, A 235, 14-27.
  • [22] Koli D. K., G. Agnihotri, R. Purohit. 2015. Advanced Aluminium Matrix Composite: The Critical Need of Automotive and Aerospace Engineering Fields. Materials today: proceeding, 2, 3032-3041.
  • [23] Djendel M., Allaoui O., Boubaaya R., 2017. Characterization of Alumina-Titania Coatings Produced by Atmospheric Plasma Spraying on 304 SS Steel. Acta Physica Polonica A., 132(3), 538.
  • [24] Akar N., Boran K., Hozikliğil B., 2013. Kalıp Sıcaklığının Döküm Parça-Kalıp Arayüzey Isı Transfer Katsayısı Üzerine Etkisi. Journal of the Faculty of Engineering and Architecture of Gazi University, 28(2), 275-282.
  • [25] FLUENT Manual, Chapter 21: Modeling Solidification and Melting; ANSYS, Inc.: Canonsburg, PA, USA, 2001.
  • [26] Arankumar, S., Sreenivas Rao, K.V., Prasanna Kumar, T.S., 2008. Spatial variation of heat flux at the metal–mold interface due to mold filling effects in gravity die-casting. International Journal of Heat and Mass Transfer, 51(11), 2676-2685.
  • [27] Hallam, C. P. and Griffiths, W. D. 2004. A model of the interfacial heat-transfer coefficient for the aluminum gravity die-casting process. Metallurgical and materials transactions B., 35(4), 721-733.
  • [28] Durat M., Nart E., Kayıkcı R.,Özsert İ., 2006. Metal Döküm Kalıpların Sonlu Elemanlar Yöntemiyle Tekrarlı Termal Analizi. Timak-Tasarım İmalat Analiz Kongresi 2006 – Balıkesir, 549-557.