Bazı Vasküler Bitkilerin Yaprak Damar Ağının Karşılaştırılması

Bu çalışmada 14 bitki türüne ait ve farklı morfolojik özellikleri olan yaprakların damar anatomileri karşılaştırmalı olarak incelenmiştir. Bitkilere ait örnekler Samsun ilinin çeşitli lokalitelerinden toplanmıştır. Örneklerden alınan taze yapraklar kurutularak stoklanmıştır. Stok yapraklara saydamlaştırma ve boyama işlemi uygulanarak damar yapıları analiz edilmiştir. Taksonların yapraklarında toplam yaprak çevresi ve alanı, damar ve boğum sayısı, toplam damar uzunluğu, toplam damar alanı, ortalama damar uzunluğu, ortalama damar genişliği, ortalama damar 2D, 3D yüzey alanları ve ortalama damar hacmi gibi karakterler açısından önemli farklılıklar tespit edilmiştir. Elde edilen bulgulara göre damarlanmanın morfometrik özellikleri saydamlaştırma ve boyama aşamaları dikkatli uygulandığında sistematik, fizyoloji ve ekoloji gibi birçok alanda yapılacak araştırmalara katkı sağlayacak güvenilir karakterler sunabilir.

Comparative Leaf Vein Architectures of Some Vascular Plants

In this research, the vein architecture of leaves belonging to 14 plant species having different morphological features were comparatively analyzed. Plant leaf samples were collected from various localities in Samsun province and were dried. The vein patterns were analyzed by applying a clearing and staining process to dried leaves. Significant differences were determined across the leaves of the studied species in terms of characters such as leaf perimeter and area, no of nodes and edges, total network length and total network area, mean length, mean width, mean 2D and 3D surface areas and mean volume of the edges. When the clearing and staining stages are applied carefully, the morphometric properties of the vascularization may provide reliable characters that will contribute to the research in many fields such as systematic, physiology and ecology.

___

  • [1] Roth-Nebelsick, A., Uhl, D., Mosbrugger, V., Kerp, H. 2001. Evolution and Function of Leaf Venation Architecture: A Review. Annals of Botany, 87(5), 553-566.
  • [2] Ellis, B., Daly, D., Hickey, L. 2009. Manual of Leaf Architecture. New York, USA: New York Botanical Garden.
  • [3] Vincent, J. F. 1982. The Mechanical Design of Grass. Journal of Materials Science, 17(3), 856-860.
  • [4] Niklas, K. J. 1999. A Mechanical Perspective on Foliage Leaf Form and Function. The New Phytologist, 143(1), 19-31.
  • [5] Givnish, T. J., Pires, J. C., Graham, S. W., McPherson, M. A., Prince, L. M., Patterson, T. B., Rai, H. S., Roalson, E. H., Evans, T. M., Hahn, W. J., Millam, K. C., Meerow, A. W., Molvray, M., Kores, P. J., O'Brien, H. E., Hall, J. C., Kress, W. J., Sytsma, K. J. 2005. Repeated Evolution of Net Venation and Fleshy Fruits Among Monocots In Shaded Habitats Confirms a Priori Predictions: Evidence From An ndhF Phylogeny. Proceedings of the Royal Society B: Biological Sciences, 272(1571), 1481-1490.
  • [6] Brodribb, T. J., Feild, T. S., Jordan, G. J. 2007. Leaf Maximum Photosynthetic Rate and Venation are Linked by Hydraulics. Plant Physiology, 144(4), 1890-1898.
  • [7] Agrawal, A. A., Konno, K. 2009. Latex: A Model for Understanding Mechanisms, Ecology, and Evolution of Plant Defense Against Herbivory. Annual Review of Ecology Evolution and Systematics, 40, 311-331.
  • [8] Katifori, E., Szöllősi, G. J., Magnasco, M. O. 2010. Damage and Fluctuations Induce Loops in Optimal Transport Networks. Physical Review Letters, 104(4), 048704.
  • [9] Brodribb, T. J., Bienaimé, D., Marmottant, P. 2016. Revealing Catastrophic Failure of Leaf Networks under Stress. Proceedings of the National Academy of Sciences, 113(17), 4865-4869.
  • [10] John, G. P., Scoffoni, C., Buckley, T. N., Villar, R., Poorter, H., Sack, L. 2017. The Anatomical and Compositional Basis of Leaf Mass per Area. Ecology Letters, 20(4), 412-425.
  • [11] Blonder, B., Salinas, N., Bentley, L. P., Shenkin, A., Chambi Porroa, P. O., Valdez Tejeira, Y., Espinoza, T. E. B., Goldsmith, G. R., Enrico, L., Martin, R., Asner, G. P., Díaz, S., Enquist, B. J., Malhi, Y. 2018. Structural and Defensive Roles of Angiosperm Leaf Venation Network Reticulation Across an Andes–Amazon Elevation Gradient. Journal of Ecology, 106(4), 1683-1699.
  • [12] Ohtsuka, A., Sack, L., Taneda, H. 2018. Bundle Sheath Lignification Mediates the Linkage of Leaf Hydraulics and Venation. Plant, Cell and Environment, 41(2), 342-353.
  • [13] Sack, L., Scoffoni, C., McKown, A. D., Frole, K., Rawls, M., Havran, J. C., Tran, H., Tran, T. 2012. Developmentally Based Scaling of Leaf Venation Architecture Explains Global Ecological Patterns. Nature Communications, 3(1), 1-10.
  • [14] Nelson, T., Dengler, N. 1997. Leaf Vascular Pattern Formation. The Plant Cell, 9(7), 1121.
  • [15] Blonder, B., Violle, C., Bentley, L. P., Enquist, B. J. 2011. Venation Networks and The Origin of the Leaf Economics Spectrum. Ecology Letters, 14(2), 91-100.
  • [16] Price, C. A., Weitz, J. S. 2014. Costs and Benefits of Reticulate Leaf Venation. BMC Plant Biology, 14(1), 234.
  • [17] Tyree, M. T., Zimmermann, M. H. 2013. Xylem Structure and the Ascent of Sap. Springer Science and Business Media.
  • [18] Anfodillo, T., Carraro, V., Carrer, M., Fior, C., Rossi, S. 2006. Convergent Tapering of Xylem Conduits in Different Woody Species. New Phytologist, 169(2), 279-290.
  • [19] Weitz, J. S., Ogle, K., Horn, H. S. 2006. Ontogenetically Stable Hydraulic Design in Woody Plants. Functional Ecology, 191-199.
  • [20] Coomes, D. A., Jenkins, K. L., Cole, L. E. 2007. Scaling of Tree Vascular Transport Systems Along Gradients of Nutrient Supply and Altitude. Biology Letters, 3(1), 87-90.
  • [21] Mencuccini, M., Hölttä, T., Petit, G., Magnani, F. 2007. Sanio’s Laws Revisited. Size‐Dependent Changes in the Xylem Architecture of Trees. Ecology Letters, 10(11), 1084-1093.
  • [22] Tyree, M. T., Sperry, J. S. 1989. Vulnerability of Xylem to Cavitation and Embolism. Annual Review of Plant Biology, 40(1), 19-36.
  • [23] Turcotte, D. L., Pelletier, J. D., Newman, W. I. 1998. Networks with Side Branching in Biology. Journal of Theoretical Biology, 193(4), 577-592.
  • [24] McCulloh, K. A., Sperry, J. S., Adler, F. R. 2003. Water Transport in Plants Obeys Murray's Law. Nature, 421(6926), 939-942.
  • [25] Agarwal, G., Belhumeur, P., Feiner, S., Jacobs, D., Kress, W. J., Ramamoorthi, R., Bourg, N. A., Dixit, N., Ling, H., Mahajan, D., Russell, R., Shirdhonkar, S., Sunkavalli, K., White, S. 2006. First Steps Toward an Electronic Field Guide for Plants. Taxon, 55(3), 597-610.
  • [26] Solé-Casals, J., Travieso, C. M., Alonso, J. B., Ferrer, M. A. 2009. Improving a Leaves Automatic Recognition Process using PCA. In 2nd International Workshop on Practical Applications of Computational Biology and Bioinformatics (IWPACBB 2008), pp. 243-251, Springer, Berlin, Heidelberg.
  • [27] Horgan, G. W., Talbot, M., Davey, J. 1998. Towards Automatic Recognition of Plant Varieties. Challenge of Image Retrieval, 5 February, Newcastle, UK, 1-8.
  • [28] Perez, A. J., Lopez, F., Benlloch, J. V., Christensen, S. 2000. Colour and Shape Analysis Techniques for Weed Detection in Cereal Fields. Computers and Electronics in Agriculture, 25(3), 197-212.
  • [29] Im, C., Nishida, H., Kunii, T. L. 1998. Recognizing Plant Species by Leaf Shapes-A Case Study of the Acer Family. Fourteenth International Conference on Pattern Recognition, 20 August, Brisbane, Queensland, Australia, 1171-1173.
  • [30] Golzarian, M. R., Frick, R. A. 2011. Classification of Images of Wheat, Ryegrass and Brome Grass Species at Early Growth Stages using Principal Component Analysis. Plant Methods, 7(1), 28.
  • [31] Bayırlı, M., Selvi, S., Çakılcıoğlu, U. 2014. Determining Different Plant Leaves' Fractal Dimensions: a New Approach to Taxonomical Study of Plants. Bangladesh Journal of Botany, 43(3), 267-275.
  • [32] Vasco, A., Thadeo, M., Conover, M., Daly, D. C. 2014. Preparation of Samples for Leaf Architecture Studies, a Method for Mounting Cleared Leaves. Applications in Plant Sciences, 2(9), 1400038.
  • [33] Price, C. A., Symonova, O., Mileyko, Y., Hilley, T., Weitz, J. S. 2011. Leaf Extraction And Analysis Framework Graphical User İnterface: Segmenting and Analyzing the Structure of Leaf Veins and Areoles. Plant Physiology, 155(1), 236-245.
  • [34] Mileyko, Y., Edelsbrunner, H., Price, C. A., Weitz, J. S. 2012. Hierarchical Ordering of Reticular Networks. PLoS One, 7(6), e36715.
  • [35] Katifori, E., Magnasco, M. O. 2012. Quantifying loopy network architectures. PloS One, 7(6), e37994.
  • [36] Sack, L., Scoffoni, C. 2013. Leaf Venation: Structure, Function, Development, Evolution, Ecology and Applications in the Past, Present and Future. New Phytologist, 198, 983–1000.
  • [37] McKown, A. D., Cochard, H., Sack, L. 2010. Decoding Leaf Hydraulics with a Spatially Explicit Model: Principles of Venation Architecture and Implications for its Evolution. American Naturalist, 175, 447–460.
  • [38] Hua, L., He, P., Goldstein, G., Liu, H., Yin, D., Zhu, S., Ye, Q. 2019. Linking Vein Properties to Leaf Biomechanics Across 58 Woody Species from a Subtropical Forest. Plant Biology, 22, 212–220.
  • [39] Kang, J., Dengler, N. 2004. Vein Pattern Development in Adult Leaves of Arabidopsis thaliana. International Journal of Plant Sciences, 165(2), 231-242.