Sıcaklık ve Besinin Coleoptera Takımına Bağlı Depolanmış Ürün Zararlısı Türlerin Gelişim Biyolojisi ve Fizyolojisine Etkisi

Depolanmış ürün zararlısı böcekler, tarlalarda veya depolarda tarımsal ürünlere zarar vermekte ve ürün kaybına neden olmaktadır. Bu nedenle ürünlerin hasat edilmesinden sonra depolarda korunması büyük önem taşımaktadır. Depolanmış ürüne verdikleri zararı önlemek için bir çok kimyasal mücadele yöntemi araştırılmaktadır. Son yıllarda kullanılan bu kimyasalların çevreye ve canlılara olumsuz etkileri anlaşıldıkça farklı yöntemler geliştirilmeye başlanmıştır. Böcekler çevreye çok hızlı adapte olmaları nedeniyle kullanılan kimyasalara zamanla daha çok direnç geliştirmektedirler. Bu nedenle böcekler ile yapılacak mücadelede böceklerin biyolojisi ve fizyolojisi iyi bilinmelidir. Bir böceğin biyolojisi ve fizyolojisi ne kadar iyi bilinirse bu böcekle yapılacak entegre mücadelede yeni yöntemler geliştirilebilir. Böcekler poikliotermik canlılardır. Yani çevre sıcaklıklarındaki değişikliklere bağımlı canlılar oldukları için sıcaklık, gelişimlerinde oldukça önemlidir. Böceklerin biyoloji ve fizyolojisini etkileyen diğer bir faktör ise besindir. Sıcaklık ve besin, birlikte böceğin gelişim aşamalarını sınırlayabilir. Yüksek sıcaklıklar gelişim aşamalarını uzatırken ergin dönemlerinde tam tersi etki yapabilir. Ya da kalitesiz besinlerle beslenen böcekler bazı kınkanatlılarda görüldüğü gibi yumurta ve ergin büyüklüğü veya kutikula gelişimini etkileyebilir. Bu derleme çalışmasında sıcaklığın ve besinin depo zararlısı kınkanatlıların biyolojisi ve fizyolojisi üzerindeki etkisi değerlendirilmiştir.

The Effect of Temperature and Nutrient on Developmental Biology and Physiology of Stored-Product Species of Coleoptera

Insect pests of stored crops damage agricultural products in the fields or warehouses and cause crop loss. For this reason, it is of great importance to protect the products in warehouses after harvest. Many chemical control methods are being researched to prevent the damage they cause to the stored product. As the negative effects of these chemicals used in recent years on the environment and living things have been understood, different methods have been started to be developed. Because insects adapt to the environment very quickly, they develop more resistance to the chemicals used over time. For this reason, the biology and physiology of insects should be well known in the fight against insects. The better the biology and physiology of an insect are known, the more new methods can be developed in the integrated control methods of this insect. Insects are poikilothermic organisms. In other words, since they are organisms dependent on changes in environmental temperatures, temperature is very important in their development. Another factor affecting the biology and physiology of insects is nutrient. Temperature and food together can limit insect developmental stages. While high temperatures prolong the developmental stages, it can have the opposite effect in the adult period. Or insects feeding on poor quality nutrient can affect egg and adult size or cuticle development, as seen in some beetles. In this review study, the effects of temperature and nutrient on the biology and physiology of storage product pest Coleopters were evaluated.

___

  • Ziegler, R., & Antwerpen, R.V. (2006). Lipid uptake by insect oocytes. Insect Biochemistry and Molecular Biology, 36, 264-272. https://doi.org/10.1016/j.ibmb.2006.01.014
  • Stathers, T.E., Arnold, S.E.J., Rumney, C.J., & Hopson, C. (2020). Measuring the nutritional cost of insect infestation of stored maize and cowpea. Food Security, 12, 285–308. https://doi.org/10.1007/s12571-019-00997-w
  • Ertürk, Ş., & Koçak E. (2017). Depolanmış hububatta zararlı böceklerle mücadelede moleküler yöntemlerin kullanım olanakları. Academia Journal of Engineering and Applied Sciences, ICAE - IWCB 2017 Special Issue, 78-87.
  • Schöller, M., & Prozell, S. (2014). Stored-product insects and their natural enemies in Germany: a species-inventory. Integrated Protection of Stored Products, 98, 27-34.
  • Zengin, E., & Karaca, İ. (2019). Determination of pest and natural enemies species and their distributions on stored wheat in Uşak Province. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 23(3), 738-742. https://doi.org/10.19113/sdufenbed.530218
  • Öztürk, T., Kibar, H., & Esen, B. (2008). Silo flow profiles for grainy agricultural products and encountering problems in silos. Gaziosmanpaşa Üniversitesi, Ziraat Fakültesi Dergisi, 25(2), 61-67.
  • Kibar H., & Öztürk, T. (2010, May 27-29) The causes of product losses emerging during storage and the solution suggestions. [Conferans presentation]. I. Ulusal Sulama ve Tarımsal Yapılar Sempozyumu, Kahramanmaraş Sütçü İmam Üniversitesi, Kahramanmaraş, Turkey. https://www.zmo.org.tr/genel/bizden_detay.php? kod=14161&tipi=2&sube=28
  • Rho., M.S., & Lee, K.P. (2017). Temperature‑driven plasticity in nutrient use and preference in an ectotherm. Oecologia, 185, 401–413. https://doi.org/10.1007/s00442-017-3959-4.
  • Tomic-Carruthers, N. (2007). Development of a meridic diet for Hylobius transversovittatus (Coleoptera: Curculionidae) and the role of carbohydrates in feeding, growth, and survival of larvae. Journal of Economic Entomology, 100, 1062-1070. https://doi.org/10.1603/0022-0493(2007)100[1062:DOAMDF]2.0.CO;2
  • Huck, D.T., Klein, M.S., & Meuti, M.E. (2021). Determining the effects of nutrition on the reproductive physiology of male mosquitoes. Journal of Insect Physiology, 129, 104191. https://doi.org/10.1016/j.jinsphys.2021.104191
  • Öztürk, R. (2021). Ferula halophila ekstraktının Galleria mellonella L. (Lepidoptera: Pyralidae)’ nın protein miktarı ve katalaz aktivitesi üzerine etkileri. S.Ü. Fen Fakültesi Fen Dergisi, 47(1), 35-46. https://doi.org/10.35238sufefd.866619
  • Morgan, D.E. (2004). Biosynthesis in insects. The Royal Society of Chemistry, 200p., Cambridge, UK.
  • Klowden, M.J. (2007). Physiological Systems in Insects, 688, Academic Press Elsevier, USA.
  • Arrese, E.L., & Soulages, J.L. (2010). Insect fat body: energy, metabolism and regulation. Annual Review Entomology, 55, 207-225. https://doi.org/10.1146/annurev-ento-112408-085356
  • Fields, P.G. (1992). The control of stored – product insects and mites with extreme temperatures. Journal of Stored Product Research, 28(2), 89 – 112. https://doi.org/10.1016/0022-474X(92)90018-L
  • Chen, L., Onagbola, E.O., & Fadamiro, H.Y. (2005). Effects of temperature, sugar availability, gender, mating and size on the longevity of phorid fly Pseudacteon tricuspis. Environmental Entomology, 34(2), 246-255. https://doi.org/10.1016/0022-474X(92)90018-L
  • Stillwell, R.C., Wallin, W.G., Hitchcock, L.J., & Fox, C.W. (2007). Phenotypic plasticity in a complex world: interactive effects of food and temperature on fitness components of a seed beetle. Oecologia, 153, 309-321. https://doi.org/10.1007/s00442-007-0748-5
  • Moczek, A, P. (1998). Horn polyphenism in the beetle Onthophagus taurus: larval diet quality and plasticity in parental investment determine adult body size and male horn morphology. Behavioral Ecololgy, 9(6), 636 – 641. https://doi.org/10.1093/beheco/9.6.636
  • Takakura, K. (2004). Variation in egg size within and among generation of the bean weevil, Bruchidius dorsalis (Coleoptera: Bruchidae): effects of host plant quality and paternal nutritional investment. Annuals of the Entomological Society of America, 97(2), 346–352. https://doi.org/10.1603/0013-8746(2004)097[0346:VIESWA]2.0.CO;2
  • Hashem, A.S., Guedes, R.N.C., & Awadalla, H.S. (2021). Feeding substrate and temperature interplay determining infestations and losses by the sawtoothed grain beetle (Oryzaephilus surinamensis). Journal of Stored Products Research, 94, 101887, 1-5. https://doi.org/10.1016/j.jspr.2021.101887
  • Hussain, H.H.B., Zinhoum, R.A., & Kassem, E.M.K. (2020). Suitability of different types of food stuffs for mass rearing of rice moth, Corcyra cephalonica (stainton) and saw-toothed grain beetle, Oryzaephilus surinamensis (l.) under laboratory conditions. Egyptian Journal of Agricultural Research, 98 (2), 288-301. https://doi.org/10.21608/EJAR.2020.120322
  • Mohammadzadeh, M., & Izadi, H. (2018). Different diets affecting biology, physiology and cold tolerance of Trogoderma granarium Everts (Coleoptera: Dermestidae). Journal of Stored Products Research, 76, 58-65. https://doi.org/10.1016/j.jspr.2017.12.008
  • Howe, R.W., & Currie, J.E. (1964). Some laboratory observations on the rates of development, mortality and oviposition of several species of bruchidae breeding in stored pulses. Bulletin Entomological Research, 55, 437-477.
  • Omar, Y.M., & Mahmoud, M.A. (2020). Effects of three constant temperature ranges to control Callosobruchus chinensis (Coleoptera: Bruchidae): a serious pest of pulses in Egypt. International Journal of Tropical Insect Science, 40,1013–1020. https://doi.org/10.1007/s42690-020-00159-y
  • Rathee, M., & Ram, P. (2018). Impact of cold storage on the performance of entomophagous insects: an overview. Phytoparasitica, 46(6), 4-32. https://doi.org/10.1007/s12600-018-0683-5
  • Sasmita, H.I., Tu, W., Bong, L., & Neoh, K. (2019). Effects of larval diets and temperature regimes on life history traits, energy reserves and temperature tolerance of male Aedes aegypti (Diptera: Culicidae): optimizing rearing techniques for the sterile insect programmes. Vectors, 12, 2-16. https://doi.org/10.1186/s13071-019-3830-z
  • Scaccini, D., Vanishvili, L., Tirello, P., Walton, V.M., Duso, C., & Pozzebon, A. (2019). Lethal and sub‐lethal effects of low‐temperature exposures on Halyomorpha halys (Hemiptera: Pentatomidae) adults before and after overwintering. Scientific Reports, 10, 1-9. https://doi.org/10.1038/s41598-020-72120-5
  • Mirzaeva, D.A., Khujamshukurov, N.A., Zokirov, B., Soxibov, B.O., & Kuchkarova, D.Kh. (2020). Influence of temperature and humidity on the development of Tenebrio molitor L. International Journal of Current Microbiology and Applied Sciences, 9(4), 3544-3559. https://doi.org/10.20546/ijcmas.2020.905.422
  • Gilbert, N., & Raworth, D.A. (1996). Insects and temperature – A general theory. The Canadian Entomologist, 128, 1- 13. DOI: https://doi.org/10.4039/Ent1281-1
  • Chown, S.L., & Nicolson, S.W. (2004). Insect Physiological Ecology, Oxford University Press Inc., 243p, New York.
  • Jajić, I., Popović, A., Urošević, M.I., Krstović, S., Petrović, M., Guljaš, D., & Samardžić, M. (2020). Fatty and amino acid profile of mealworm larvae (Tenebrio molitor l.) Biotechnology in Animal Husbandry, 36(2), 167-180. https://doi.org/10.2298/BAH2002167J
  • Baldin, E.L.L., & Lara, E.F.M. (2004). Effect of storage temperature and bean genotypes on the resistance to Acanthoscelides obtectus (Say) (Coleoptera:Bruchidae). Neotropical Entomology, 33(3), 365-369. https://doi.org/10.1590/S1519-566X2004000300015
  • Kpoviessi, A.D., Agbahoungba, S., Agoyi, E.E., Nuwamanya, E., Assogbadjo, A.E., Chougourou, D.C., & Adoukonou-Sagbadja, H. (2021). Primary and secondary metabolite compounds in cowpea seeds resistant to the cowpea bruchid [Callosobruchus maculatus (F.)] in postharvest storage. Journal of Stored Products Research, 93, 101858, 1-8. https://doi.org/10.1016/j.jspr.2021.101858
  • Abdel-Hady, A.A.A., Ramadan, M.M., Lü, J., & Hashem, A.S. (2021). High-temperature shock consequences on the red flour beetle (Tribolium castaneum) and the rice weevil (Sitophilus oryzae). Journal of Thermal Biology, 100, 103062. https://doi.org/10.1016/j.jtherbio.2021.103062
  • Lale, N.E.S., & Vidal, S. (2003a). Simulation studies on the effects of solar heat on egg-laying, development and survival of Callosobruchus maculatus (F.) and Callosobruchus subinnotatus (Pic) in stored bambara groundnut Vigna subterranea (L.) Verdcourt. Journal of Stored Products Research, 39(5), 447-458. https://doi.org/10.1016/S0022-474X(01)00034-0
  • Akbulut, S. (2000). Küresel ısınmanın böcek populasyonları üzerine muhtemel etkileri. Çevre Koruma Dergisi, 9(36), 25 – 27.
  • Johnson, J.A., & Valero, K.A. (2003). Use of commercial freezers to control cowpea weevil, Callosobruchus maculatus (Coleoptera: Bruchidae), in Organic Garbanzo Beans. Journal of Economical Entomology, 96(6), 1952-1957. https://doi.org/10.1093/jee/96.6.1952
  • Prasantha, B.D.R., Reichmuth, C., & Büttner, C. (2002, July 22-26). Effect of temperature and relative humudity on diatomaceous earth treated Callosobruchus maculatus (F.) and Acanthoscelides obtectus (Say) (Coleoptera:Bruchidae). [Conference presentation]. Proceedings of the 8th International Working Conference on Stored Product Protection. York, UK. http://spiru.cgahr.ksu.edu/proj/iwcspp/iwcspp8.html
  • Errico, S., Dimatteo, S., Moliterni, S., & Baldacchino, F. (2021). Effects of long-lasting cold storage on Tenebrio molitor larvae (Coleoptera: Tenebrionidae). Journal of Insects as Food and Feed, 3, 1-6. https://doi.org/10.3920/JIFF2020.0162
  • Somero, N.G. (1995). Protein and temperature. Annual Review of Physiology, 57, 43-68. https://doi.org/10.1146/annurev.ph.57.030195.000355
  • Zhang, D.W., Xiao, Z.J., Zeng, B.P., Li, K., & Tang Y.L. (2019). Insect behavior and physiological adaptation mechanisms under starvation stress. Frontiers in Physiology, 10, 163, 1-8. https://doi.org/10.3389/fphys.2019.00163
  • Chandrakantha, J., Muthukrishnan, J., & Mathavan, S. (1987). Effect of temperature and host seed species on the fecundity of Callosobruchus maculatus (F.). Proceedings of the Indian Academy of Sciences (Animal Science), 96(3), 221-227.
  • Kistler, R.A. (1982). Effects of temperature on six species of seed beetles (Coleoptera:Bruchidae): an ecological perspective. Annals of the Entomological Society of America, 75(3), 266-271. https://doi.org/10.1093/aesa/75.3.266
  • Dupuis, A.S., Fuzeau, B., & Fleurat-Lessard, F. (2006, October 15-18). Feasibility of french beans disinfestation based on freezing intolerance of post-embriyonic stages of Acanthoscelides obtectus (Say)(Col.:Bruchidae). [Conference presentation]. 9. International Working Conference on Stored Product Protection. Sao Paulo, Brasil. https://silo.tips/download/the-royal-palm-plaza-hotel-resort-campinas-sao-paulo-brazil
  • Ferizli, A.G., Emekçi, M., Tutuncu, S., & Navarro, S. (2004). Utilization of freezing temperatures to control Callosobruchus maculatus Fabr. (Coleoptera: Bruchidae). Integrated Protection of Stored Products, 27(9), 213-217. file:///C:/Users/casper/Downloads/Ferizli2004FreezingCmaculatusIOBC.pdf
  • Lale, N.E.S., & Vidal, S. (2003b). Effect of constant temperature and humidity on oviposition and development of Callosobruchus maculatus (F.) and Callosobruchus subinnotatus (Pic) on bambara groundnut, Vigna subterranea (L.) Verdcourt. Journal of Stored Product Research, 39(5), 459 – 470. https://doi.org/10.1016/S0022-474X(01)00028-5
  • Sönmez, E., & Koç, Y. (2019). Effects of cold exposure on Tenebrio molitor (Coleoptera: Tenebrionidae) pupal period, proportion of adult emergence, weight and deformation percentage. Entomologica Fennica, 30(1), 43-48. https://doi.org/10.33338/ef.79905
  • Sönmez, E. (2021a). Effects of cold storage on the developmental biology of Tenebrio molitor L., 1758 (Coleoptera: Tenebrionidae) at different larval stages. Turkish Journal of Entomology, 45(2), 259-268. DOI: http://dx.doi.org/10.16970/entoted.855011
  • Banjo, A.D., Lawal, O.A., & Songonuga, E.A. (2006). The nutritional value of fourteen species of edible insects in Southwestern Nigeria. African Journal of Biotechnology, 5(3), 298-301. https://doi.org/10.5897/AJB05.250
  • Firidin, B., Yanar, O., & Yılmaz, H. (2013). Herbivor böceklerin besin dengeleme mekanizmaları. Türk Bilimsel Derlemeler Dergisi, 6(2), 103-105.
  • Genç, H. (2006). General principles of insect nutrional ecology. Trakya University Journal of Science, 7(1), 53-57.
  • Pekşen, E., & Artık, C. (2005). Antibesinsel maddeler ve yemeklik tane baklagillerin besleyici değerleri. Journal of Faculty of Agriculture, 20(2), 110-120.
  • Chippendale, G. M. (1972). Dietary carbohydrates: role in survival of the adult rice weevil, Sitophilus oryzae. Journal of Insect Physiology, 18(5), 949 – 957. https://doi.org/10.1016/0022-1910(72)90032-7
  • Singh, N.B., & Sinha, R.N. (1977). Carbohydrate, lipid and protein in the developmental stages of Sitophilus oryzae and S.granarius (Coleoptera:Curculionidae). Annuals of the Entomological Society of America, 70(1), 107-111. https://doi.org/10.1093/aesa/70.1.107
  • Allali, A., Rezouki, S., Bouchelta, Y., Louaste, B., Nechad, I., Eloutassi, N., & Fadli, M. (2020). Effect of host seed species and seed coat on the biological parameters of Callosobruchus maculatus. International Journal of Entomology Research, 5(4), 40-43.
  • Nettles, W. C., Parro, B., Sharbaugh, C., & Mangum, C. L. (1972). Trehalose and other carbohydrates in diapausing and starving boll weevils. Annual of the Entomological Society of America, 65(3), 554 – 558. https://doi.org/10.1093/aesa/65.3.554
  • Haynes, J. (1985). Sterile boll weevils (Coleoptera:Curculionidae) fed 10% sugar diets: effect on longevity, mating, and flight. Journal of Economic Entomology, 78(4), 783 – 786.
  • Sharma, S. P., & Sharma, G. (1980). Age-related glycogen changes in bruchids, mechanisms of ageing and development. Mechanisms of Ageing and Development, 13(4), 397 – 400. https://doi.org/10.1016/0047-6374(80)90082-2
  • El Atta, H.A. (2000). Effect of diet and seed pretreatment on the biology of Bruchidius uberatus (Coleoptera, Bruchidae). Silva Fennica, 34(4), 431–435. https://doi.org/10.14214/sf.624
  • Hosen, M., Khan, A.R., & Hossain, M. (2004). Growth and development of the lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera:Tenebrionidae) on cereal flours. Pakistan Journal of Biological Sciences, 7(9), 1505-1508. https://doi.org/10.3923/pjbs.2004.1505.1508
  • El-Fouly, S.H., Kelany, I.M., Omara, S.M., Hassanein, S.S.M., Gharib M.S., & Seleem, G.Sh. (2021). Biological studies on the cigarette beetle, Lasioderma serricorne (F.) on different botanical foods. Zagazig Journal of Agricultural Research, 48(1), 65-78.
  • Oonincx, D.G.A.B., & Finke M.D. (2020). Nutritional value of insects and ways to manipulate their composition. Journal of Insects as Food and Feed, 7 (5), 639 – 659. https://doi.org/10.3920/JIFF2020.0050
  • Renault, D., Bouchereau, A., Delettre, Y. R., Hervant, F., & Vernon, P. (2006). Changes in free amino acids in Alphitobius diaperinus (Coleoptera: Tenebrionidae) during thermal and food stress. Comparative Biochemistry and Physiology, Part A: Molecular and Integrative Physiology, 143, 279 – 285. https://doi.org/10.1016/j.cbpa.2005.11.012
  • Huignard, J. (1983). Transfer and fate of male secretions deposited in the spermatophore of females of Acanthoscelides obtectus Say (Coleoptera:Bruchidae). Journal of Insect Physiology, 29(1), 55-59. https://doi.org/10.1016/0022-1910(83)90106-3
  • Velten, G., Rott, A. S., Cardona, C., & Dorn, S. (2007). The ınhibitory effect of the natural seed storage protein arcelin on the development of Acanthoscelides obtectus. Journal Stored Product Research, 43, 550 - 557. https://doi.org/10.1016/j.jspr.2007.03.005
  • Yılmaz, A., & Elmalı, M. (2002). Değişik fasulye çeşitlerinde fasulye tohum böceği [Acanthoscelides obtectus (Say) (Col.:Bruchidae)]’nin gelişme ve çoğalması. Bitki Koruma Bülteni, 42(1-4), 35-52.
  • Bhardwaj, A.C., & Pooja, R. (2005). Amino acid pattern during developing stages and in young pulse beetle, Callosobruchus chinensis (L.)(Coleoptera:Bruchidae). Journal of Entomological Research, 29(4), 289-291.
  • Duarte, S., Lim˜ao, J., Barros, G., Bandarra, N.M., Roseiro, L.C., Gonçalves, H., Martins, L.L., Mourato, M.P., & Carvalho, M.O. (2021). Nutritional and chemical composition of different life stages of Tribolium castaneum (Herbst). Journal of Stored Products Research, 93, 101826, 1-6. https://doi.org/10.1016/j.jspr.2021.101826
  • Andersen, S.O., Chase, A.M., & Willis, J.H. (1973). The amino-acids composition of cuticles from Tenebrio molitor with special reference to the action of juvenile hormone. Insect Biochemistry, 3(10), 171-180.
  • Behmer, S.T. (2006). Insect Dietary Needs: Plants as Food for Insects. In: Encyclopedia of Plant and Crop Science (Ed. R. M. Goodman), Marcel Dekker Publishers, New York, NY.
  • Wackers, F.L., Romeis, J., & Rijn, P. (2007). Nectar and pollen feeding by insect herbivores and implications for multitrophic interactions. Annuals Review Entomolgy, 52, 301-323. https://doi.org/10.1146/annurev.ento.52.110405.091352
  • Nicolson, S.W. (1998). The importance of osmosis in nectar secretion and its consumption by insects. American Zoologist, 38, 418-425. https://doi.org/10.1093/icb/38.3.418
  • Fields, P.G., Fleurat-Lessard, F., Lavenseau, L., Febvay, G., Peypelut, L., & Bonnot, G. (1998). The effect of cold acclimation and deacclimation on cold tolerance, trehalose and free amino acid levels in Sitophilus granarius and Cryptolestes ferrugineus (Coleoptera). Journal of Insect Physiology, 44, 955-965. https://doi.org/10.1016/S0022-1910(98)00055-9
  • Masoumi, Z., Noghabi, S.S., & Izadi, H. (2021). Trehalose and proline failed to enhance cold tolerance of the cowpea weevil, Callosobruchus maculatus (F.) (Col.: Bruchidae). Journal of Stored Products Research, 93, 101853, 1-6. https://doi.org/10.1016/j.jspr.2021.101853
  • Sönmez, E., & Gülel, A. (2008). Effects of different temperatures on the total carbohydrate, lipid and protein amounts of the bean beetle, Acanthoscelides obtectus Say (Coleoptera: Bruchidae). Pakistan Journal of Biological Science, 11(14),1803-1808. https://doi.org/10.3923/pjbs.2008.1803.1808
  • Aguilar, J.Gd.S. (2021). An overview of lipids from insects. Biocatalysis and Agricultural Biotechnology, 33, 101967, 1-9. https://doi.org/10.1016/j.bcab.2021.101967
  • Sinclair, B.J., & Marshall, K.E. (2018). The many roles of fats in overwintering insects. Journal of Experimental Biology, 7(221), 1-9. https://doi.org/10.1242/jeb.161836
  • Mlček, J., Adámková, A., Adámek, M., Borkovcová, M., Bednářová, M., & Knížková, I. (2019). Fat from Tenebrionidae bugs – sterols content, fatty acid profiles, and cardiovascular risk indexes. Polish Journan of Food and Nutrition Sciences, 69(3), 247- 254. https://doi.org/10.31883/pjfns/109666
  • Volov, M., Cohen, N., Bodner, L., Dubiner, S., Hefetz, A., Bouchebti, S., & Levin, E. (2021). The effect of climate and diet on body lipid composition in the oriental hornet (Vespa orientalis). Frontiers in Ecology and Evolution, 9, 1-10. https://doi.org/10.3389/fevo.2021.755331
  • Canavoso, L.E., Jouni, Z.E., Karnas, K.J., Pennington, J.E., & Wells, M.A. (2001). Fat metabolism in insects. Annual Review Nutrition, 21, 23-46. https://doi.org/10.1146/annurev.nutr.21.1.23
  • Ogg, C.L., & Stanley-Samuelson, D.W. (1992). Phospholipid and triacylglycerol fatty acid compositions of the major life stages and selected tissues of the tobacco hornworn Manduca sexta. Comparative Biochemistry and Physiology, Part B: Biochemistry and Molecular Biology, 101(3), 345-351. https://doi.org/10.1016/0305-0491(92)90011-F
  • Howard, R.W., & Stanley-Samuelson, D.W. (1996). Fatty acid composition of fat body and malpighian tubules of the Tenebrionid Beetle, Zophobas atratus: signigicance in eicosanoid-mediated physiology. Comparative Biochemistry and Physiology, 115B(4), 429-437. https://doi.org/10.1016/S0305-0491(96)00161-7
  • Dreassi, E., Cito, A., Zanfini, A., Materozzi, L., Botta, M., & Francardi, V. (2017). Dietary fatty acids influence the growth and fatty acid composition of the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). Lipids, 52(3), 285-294. https://doi.org/10.1007/s11745-016-4220-3
  • Sönmez, E. (2021b). The effect of different cold storage period on total lipid amount of Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Journal of Anatolian Environmental and Animal Sciences, 6(3), 449-455. https://doi.org/10.35229/jaes.970307
  • Sönmez, E., Güvenç, D., & Gülel, A. (2016a). The changes in the types and amounts of fatty acids of adult Acanthoscelides obtectus (Coleoptera: Bruchidae) in terms of age and sex. International Journal of Fauna and Biological Sciences, 3(4), 90-96.
  • Sönmez, E. (2016b). The effects of three different temperatures on the total lipid and total fatty acid amounts of Acanthoscelides obtectus Say, 1931 (Coleoptera: Bruchidae) adults. International Journal of Fauna and Biological Studies, 3(5), 97-102.
  • Nietupski, M., Szafranek, B., Ciepielewska, D., Synak, E., Fornat, L., & Szafranek, J. (2005). Correlation between bean seed surface lipids and Acanthoscelides obtectus Say development. Journal of Plant Protection Research, 45(2), 125-132.
  • Castro, R.J.S., Ohara, A., Aguilar, J.G.D.S. & Domingues, M.A.F. (2018). Nutritional, functional and biological properties of insect proteins: processes for obtaining, consumption and future challenges. Trend Food Science Technology, 76, 82-89. https://doi.org/10.1016/j.tifs.2018.04.006
  • Erdoğan, B., Görür, A., Peksever, D., Sümer, O. & El, S.N. (2021). Sürdürülebilir protein kaynaği olarak yenilebilir böceklerin besleyici özellikleri ve tüketici kabulü. GIDA, 46(5), 1105-1116. https://doi.org/10.15237/gida.GD21074
  • Tzompa-Sosa, D.A., Yi, L.Y., Van Valenberg, H.J.F., Van Boekel, M.A.J.S. & Lakemond, C.M.M. (2014). Insect lipid profile: aqueous versus organic solventbased extraction methods. Food Research International, 62, 1087–1094. https://doi.org/10.1016/j.foodres.2014.05.052
  • Dossey, A.T., Tatum, J.T., & Mc Gill, W.L. (2016). Modern Insect - Based Food İndustry: Current Status, Insect Processing Technology, and Recommendations Moving Forward. In: Dossey, A.T., Morales – Ramos, J.A., Rojas, M.G. (Eds .), Insects as Sustainable Food Ingredients. Academic Press, pp . 113 – 152, San Diego.
  • Paul, A., Frederich, M., Megido, R.C., Alabi, T., Malik, P., Uyttenbroeck, R., Francis, F., Blecker, C., Haubruge, E., Lognau, G. & Danthine, S. (2017). Insect fatty acids: a comparison of lipids from three orthopterans and Tenebrio molitor L. larvae. Journal of Asia-Pacific Entomology, 20(2), 337-340. https://doi.org/10.1016/j.aspen.2017.02.001
  • Yadava, R.P.S., Musgrave, A.J., & Rattray, J.B.M. (1973). Fatty acid composition of different lipid classes in two symbiotic weevils, Sitophilus oryzae l. and Sitophilus zeamais (mots.) (Coleoptera: Curculionidae). Comparative Biochemistry and Physiology, Part B: Biochemistry and Molecular Biology, 46(4), 839-845. https://doi.org/10.1016/0305-0491(73)90127-2
  • Nwanze, K.F., Maskarinec, J.K., & Hopkins, T.L. (1976). Lipid composition of the normal and fligth forms of adult cowpea weevils, Callosobruchus maculatus. Journal of Insect Physiology, 22(6), 897-899. https://doi.org/10.1016/0022-1910(76)90262-6
  • Cohen, E. (1974). Fatty acid synthesis by the hide beetle Dermestes maculatus (Dermestidae:Coleoptera). Entomologia Experimentalis et Applicata, 17,433-438.
  • Guerra, A.A., Robacker, D.C. (1989). Effects of sex, age and diet on the triacylglcerol fatty acid composition of subtropical boll weevils, Anthonomus grandis Boheman (Coleoptera:Curculionidae). Journal of Agricultural and Food Chemistry, 37, 796-799.
  • Perez-Mendoza, J., Dover, B.A., Hagstrum, D.W., & Hopkins, T.L. (1999). Effect of crowding, food deprivation and diet on fligth ınitation and lipid reserves of the lesser grain borer, Rhyzopertha dominica. Entomologia Experimentalis et Applicata, 91, 317-326.
  • Golebiowski, M., Malinski, E., Nawrot, J., & Stepnowski, P. (2008). Identification and characterization of surface lipid components of the dried-bean beetle Acanthoscelides obtectus (Say) (Coleoptera:Bruchidae). Journal of Stored Product Research, 44, 386-388. https://doi.org/10.1016/j.jspr.2008.02.010
  • Khebbeb, M.E.H., Delachambre, J., & Soltani, N. (1997). Lipid metabolism during the sexual maturation of the mealworm (Tenebrio molitor): effect of ingested diflubenzuron. Pesticide Biochemistry and Physiology, 58, 209-217. https://doi.org/10.1006/pest.1997.2296
  • Bursell, E., & Clements, A.N. (1967). The cuticular lipids of the larva of Tenebrio molitor L.(Coleoptera). Journal of Insect Physiology, 13(11), 1671-1678. https://doi.org/10.1016/0022-1910(67)90162-X
  • Wigthman, J.A. (1978). The ecology of Callosobruchus analis (Coleoptera:Bruchidae) energitics and energy reserves of the adults. Journal of Animal Ecology, 47, 131-142. https://doi.org/10.2307/3927
  • Kurečka, M., Kulma, M., Petříčková, D., Plachý, V., & Kouřimská, L. (2021). Larvae and pupae of Alphitobius diaperinus as promising protein alternatives. European Food Research and Technology, 247, 2527–2532. https://doi.org/10.1007/s00217-021-03807-w
  • Downer, R.G.H., & Matthews, J.R. (1976). Patterns of lipid distribution and utilisation in insects. American Zoologist, 16, 733-745. https://doi.org/10.1093/icb/16.4.733
  • Ximenes, A.A., Oliveria, G.A., Bittencourt-Cunha, P., Tomokyo, M., Leite, D.B., Folly, E., Golodne, D.M., & Atella, G.C. (2008). Purification, partial characterization and role in lipid transport to developing oocytes of a novel lipophorin from the cowpea weevil, Callosobruchus maculatus. Brazilian Journal of Medical and Biological Research, 41, 18-25. https://doi.org/10.1590/S0100-879X2006005000191
  • Renobales, M., Cripps, C., Stanley-Samuelson, D.W., Jurenka, R.A., Blomquist, G.J. (1987). Biosynthesis of linoleic acid in insects. Trends Biochemistry Science, 12, 364-366. https://doi.org/10.1016/0968-0004(87)90167-8
  • Blomquist, G.J., Borgeson, C.E., & Vundla, M. (1991). Polyunsaturated fatty acids and eicosanoids in insects. Insect Biochemistry, 21(1), 99-106. https://doi.org/10.1016/0020-1790(91)90069-Q
  • Cohen, E., & Levinson, Z.H. (1972). The effect of fatty acids on reproductive of the hide beetle Dermestes maculatus (Dermestidae:Coleoptera). Life Sciences, 11(6), 293-299. https://doi.org/10.1016/0024-3205(72)90082-3
  • Lambremont, E.N., Blum, M.S., & Schrader, R.M. (1964). Storage and fatty acid composition of triglycerides during adult diapause of the boll weevil. Annals of the Entomological Society of America, 57(5), 526-532. https://doi.org/10.1093/aesa/57.5.526
  • Stanley-Samuelsen, D.W., Jurenkai, R.A., Cripps, C., Blomquist, G.J., & Renobales, M. (1988). Fatty acids in insects: composition, metabolism and biological significance. Archives Insect Biochemistry and Physiology, 9, 1-33. https://doi.org/10.1002/arch.940090102
  • Tillman, J.A., Seybold, S.J., Jurenka, R.A., Blomquist, G.J. (1999). Insect pheromones an overview of biosynthesis and endocrine regulation. Insect Biochemistry and Molecular Biology, 29, 481-514. https://doi.org/10.1016/S0965-1748(99)00016-8
  • Meinwald, Y.C., & Eisner, T. (1964). Defence mechanism of arthropods, XIV. caprylic acid: an accessory component of the secretion of Eleodes longicollis. Annals of the Entomological Society of America, 57(4), 513-514.
  • Smith, R.J., & Grula, E.A. (1982). Toxic components on the larval surface of the corn earworm (Heliothis zea) and their effects on germination and growth of Beauveria bassiana. Journal of Invertebrates Pathology, 39(1), 15-22. https://doi.org/10.1016/0022-2011(82)90153-7
  • Stanley, D. (2006). Prostaglandins and other eicosanoids in insects: biological significance. Annual Review Entomology, 51, 25-44. https://doi.org/10.1146/annurev.ento.51.110104.151021